Title: | Diagnostics for Nonlinear Mixed-Effect Models |
---|---|
Description: | A model building aid for nonlinear mixed-effects (population) model analysis using NONMEM, facilitating data set checkout, exploration and visualization, model diagnostics, candidate covariate identification and model comparison. The methods are described in Keizer et al. (2013) <doi:10.1038/psp.2013.24>, and Jonsson et al. (1999) <doi:10.1016/s0169-2607(98)00067-4>. |
Authors: | Andrew C. Hooker [aut, cre, cph], Mats O. Karlsson [aut, cph], Justin J. Wilkins [aut], E. Niclas Jonsson [aut, trl, cph], Ron Keizer [ctb] (functionality for bootstrap of GAM and SCM) |
Maintainer: | Andrew C. Hooker <[email protected]> |
License: | LGPL (>= 3) |
Version: | 4.7.3 |
Built: | 2025-01-27 05:41:47 UTC |
Source: | https://github.com/uupharmacometrics/xpose4 |
Xpose is an R-based model building aid for population analysis using NONMEM. It facilitates data set checkout, exploration and visualization, model diagnostics, candidate covariate identification and model comparison.
Xpose takes output from NONMEM output and/or PsN output and generates graphs or other analyses. It is assumed that each NONMEM run can be uniquely identified by a run number (see section below for how to generate the appropriate input to Xpose). Xpose is implemented using the lattice graphics library.
The Xpose package can be divided up into six subsections (functions associated with each of the different subsections are linked in the "See Also" section):
Functions for managing the input data and manipulating the Xpose database.
Generic wrapper functions around the lattice functions. These functions can be invoked by the user but require quite detailed instructions to generate the desired output.
These functions are single purpose functions that generate specific output given only the Xpose database as input. The behavior can, to some extent, be influenced by the user.
Xpose has a text based menu interface to make it simple for the user to invoke the Xpose specific functions. This interface is called Xpose Classic. Given the limitations a text based interface imposes, Xpose Classic is not very flexible but may be useful for quick assessment of a model and for learning to use Xpose.
These functions are the interface between Xpose and PsN, i.e. they do not post-process NONMEM output but rather PsN output.
Functions take an Xpose object and performs a generalized additive model (GAM) stepwise search for influential covariates on a single model parameter.
Xpose recognizes NONMEM runs, and files associated to a particular run, though the run number. This is a number that is used in the name of NONMEM model files, output files and table files. The fundamental input to Xpose is one or more NONMEM table files. These table files should be named as below followed by the run number, for example xptab1 for run number 1. Xpose looks for files according to the following pattern, where * is your run number:
sdtab* Standard table file, containing ID, IDV, DV, PRED, IPRED, WRES, IWRES, RES, IRES, etc.
patab* Parameter table, containing model parameters - THETAs, ETAs and EPSes
catab* Categorical covariates, e.g. SEX, RACE
cotab* Continuous covariates, e.g. WT, AGE
extra*, mutab*, mytab*, xptab*, cwtab* Other variables you might need to have available to Xpose
run*.mod Model specification file
run*.lst NONMEM output
Strictly, only one table file is needed for xpose (for example sdtab* or xptab*). However, using patab*, cotab*, catab* will influence the way that Xpose interprets the data and are recommended to get full benefit from Xpose.
You can use code in NONMEM similar to the following to generate the tables you need. NONMEM automatically appends DV, PRED, WRES and RES unless NOAPPEND is specified. Don't forget to leave at least one blank line at the end of the NONMEM model specification file.
$TABLE ID TIME IPRED IWRES EVID MDV NOPRINT ONEHEADER FILE=sdtab1
$TABLE ID CL V2 KA K SLP KENZ NOPRINT ONEHEADER FILE=patab1
$TABLE ID WT HT AGE BMI PKG NOPRINT ONEHEADER FILE=cotab1
$TABLE ID SEX SMOK ALC NOPRINT ONEHEADER FILE=catab1
E. Niclas Jonsson, Mats Karlsson, Justin Wilkins and Andrew Hooker
Useful links:
Report bugs at https://github.com/UUPharmacometrics/xpose4/issues
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xsubset()
Other generic functions:
gof()
,
xpose.multiple.plot
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
Other classic functions:
xpose4()
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
Other GAM functions:
GAM_summary_and_plot
,
xp.get.disp()
,
xp.scope3()
,
xpose.bootgam()
,
xpose.gam()
## Not run: # run the classic interface library(xpose4) xpose4() # command line interface library(xpose4) xpdb <- xpose.data(5) basic.gof(xpdb) ## End(Not run)
## Not run: # run the classic interface library(xpose4) xpose4() # command line interface library(xpose4) xpdb <- xpose.data(5) basic.gof(xpdb) ## End(Not run)
These functions plot absolute differences in PRED, IPRED, WRES, CWRES and IWRES against covariates for two specified model fits.
absval.dcwres.vs.cov.model.comp( object, object.ref = NULL, type = NULL, ylb = expression(paste("|", Delta, "CWRES|")), main = "Default", ... ) absval.dipred.vs.cov.model.comp( object, object.ref = NULL, type = NULL, ylb = expression(paste("|", Delta, "IPRED|")), main = "Default", ... ) absval.diwres.vs.cov.model.comp( object, object.ref = NULL, type = NULL, ylb = expression(paste("|", Delta, "IWRES|")), main = "Default", ... ) absval.dpred.vs.cov.model.comp( object, object.ref = NULL, type = NULL, ylb = expression(paste("|", Delta, "PRED|")), main = "Default", ... ) absval.dwres.vs.cov.model.comp( object, object.ref = NULL, type = NULL, ylb = expression(paste("|", Delta, "WRES|")), main = "Default", ... )
absval.dcwres.vs.cov.model.comp( object, object.ref = NULL, type = NULL, ylb = expression(paste("|", Delta, "CWRES|")), main = "Default", ... ) absval.dipred.vs.cov.model.comp( object, object.ref = NULL, type = NULL, ylb = expression(paste("|", Delta, "IPRED|")), main = "Default", ... ) absval.diwres.vs.cov.model.comp( object, object.ref = NULL, type = NULL, ylb = expression(paste("|", Delta, "IWRES|")), main = "Default", ... ) absval.dpred.vs.cov.model.comp( object, object.ref = NULL, type = NULL, ylb = expression(paste("|", Delta, "PRED|")), main = "Default", ... ) absval.dwres.vs.cov.model.comp( object, object.ref = NULL, type = NULL, ylb = expression(paste("|", Delta, "WRES|")), main = "Default", ... )
object |
An xpose.data object. |
object.ref |
An xpose.data object. If not supplied, the user will be prompted. |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
ylb |
A string giving the label for the y-axis. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Conditional weighted residuals (CWRES) may require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Returns a stack of plots comprising comparisons of PRED, IPRED, WRES (or CWRES) and IWRES for the two specified runs.
absval.dcwres.vs.cov.model.comp()
: The absolute differences in individual predictions
against covariates for two specified model fits.
absval.dipred.vs.cov.model.comp()
: The absolute differences in individual predictions
against covariates for two specified model fits.
absval.diwres.vs.cov.model.comp()
: The absolute differences in individual weighted
residuals
against covariates for two specified model fits.
absval.dpred.vs.cov.model.comp()
: The absolute differences in population predictions
against covariates for two specified model fits.
absval.dwres.vs.cov.model.comp()
: The absolute differences in
population weighted residuals
against covariates for two specified model fits.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
compute.cwres
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## We expect to find the required NONMEM run and table files for runs ## 5 and 6 in the current working directory xpdb5 <- xpose.data(5) xpdb6 <- xpose.data(6) ## A basic dWRES plot, without prompts absval.dwres.vs.cov.model.comp(xpdb5, xpdb6) ## Custom colours and symbols, no user IDs absval.dpred.vs.cov.model.comp(xpdb5, xpdb6, cex=0.6, pch=8, col=1, ids=NULL) ## End(Not run)
## Not run: ## We expect to find the required NONMEM run and table files for runs ## 5 and 6 in the current working directory xpdb5 <- xpose.data(5) xpdb6 <- xpose.data(6) ## A basic dWRES plot, without prompts absval.dwres.vs.cov.model.comp(xpdb5, xpdb6) ## Custom colours and symbols, no user IDs absval.dpred.vs.cov.model.comp(xpdb5, xpdb6, cex=0.6, pch=8, col=1, ids=NULL) ## End(Not run)
This creates a stack of box and whisker plot of absolute population conditional weighted residuals (|CWRES|) vs covariates, and is a specific function in Xpose 4. It is a wrapper encapsulating arguments to the codexpose.plot.bw function. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.
absval.cwres.vs.cov.bw(object, xlb = "|CWRES|", main = "Default", ...)
absval.cwres.vs.cov.bw(object, xlb = "|CWRES|", main = "Default", ...)
object |
An xpose.data object. |
xlb |
A string giving the label for the x-axis. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling box-and-whisker plots are
available. See xpose.plot.bw
for details.
Returns a stack of box-and-whisker plots of |CWRES| vs covariates.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.bw
, xpose.panel.bw
,
compute.cwres
, bwplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb absval.cwres.vs.cov.bw(xpdb)
## Here we load the example xpose database xpdb <- simpraz.xpdb absval.cwres.vs.cov.bw(xpdb)
This is a plot of absolute population conditional weighted residuals
(|CWRES|) vs population predictions (PRED), a specific function in Xpose 4.
It is a wrapper encapsulating arguments to the xpose.plot.default
function. Most of the options take their default values from xpose.data
object but may be overridden by supplying them as arguments.
absval.cwres.vs.pred(object, idsdir = "up", type = "p", smooth = TRUE, ...)
absval.cwres.vs.pred(object, idsdir = "up", type = "p", smooth = TRUE, ...)
object |
An xpose.data object. |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Returns an xyplot of |CWRES| vs PRED.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, compute.cwres
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## End(Not run) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.cwres.vs.pred(xpdb) ## A conditioning plot absval.cwres.vs.pred(xpdb, by="HCTZ") ## Custom heading and axis labels absval.cwres.vs.pred(xpdb, main="My conditioning plot", ylb="|CWRES|", xlb="PRED") ## Custom colours and symbols, no IDs absval.cwres.vs.pred(xpdb, cex=0.6, pch=3, col=1, ids=FALSE)
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## End(Not run) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.cwres.vs.pred(xpdb) ## A conditioning plot absval.cwres.vs.pred(xpdb, by="HCTZ") ## Custom heading and axis labels absval.cwres.vs.pred(xpdb, main="My conditioning plot", ylb="|CWRES|", xlb="PRED") ## Custom colours and symbols, no IDs absval.cwres.vs.pred(xpdb, cex=0.6, pch=3, col=1, ids=FALSE)
This is a plot of absolute population conditional weighted residuals
(|CWRES|) vs population predictions (PRED) conditioned by covariates, a
specific function in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
absval.cwres.vs.pred.by.cov( object, covs = "Default", ylb = "|CWRES|", type = "p", smooth = TRUE, idsdir = "up", main = "Default", ... )
absval.cwres.vs.pred.by.cov( object, covs = "Default", ylb = "|CWRES|", type = "p", smooth = TRUE, idsdir = "up", main = "Default", ... )
object |
An xpose.data object. |
covs |
A vector of covariates to use in the plot. If "Default" the
the covariates defined in |
ylb |
A string giving the label for the y-axis. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
The main
argument is not supported owing to the multiple plots
generated by the function.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Returns a stack of xyplots of |CWRES| vs PRED, conditioned on covariates.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
absval.cwres.vs.pred
,
xpose.plot.default
, xpose.panel.default
,
xyplot
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
absval.cwres.vs.pred.by.cov(simpraz.xpdb, covs=c("HCTZ","WT"), max.plots.per.page=2)
absval.cwres.vs.pred.by.cov(simpraz.xpdb, covs=c("HCTZ","WT"), max.plots.per.page=2)
This is a matrix plot of absolute population weighted residuals (|CWRES|) vs
population predictions (PRED) and absolute individual weighted residuals
(|IWRES|) vs individual predictions (IPRED), a specific function in Xpose 4.
It is a wrapper encapsulating arguments to the absval.cwres.vs.pred
and absval.iwres.vs.ipred
functions.
absval.iwres.cwres.vs.ipred.pred(object, main = "Default", ...) absval.iwres.wres.vs.ipred.pred(object, main = "Default", ...)
absval.iwres.cwres.vs.ipred.pred(object, main = "Default", ...) absval.iwres.wres.vs.ipred.pred(object, main = "Default", ...)
object |
An xpose.data object. |
main |
The title of the plot. If |
... |
Other arguments passed to |
The plots created by the absval.wres.vs.pred
and
absval.iwres.vs.ipred
functions are presented side by side for
comparison.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Returns a compound plot.
absval.iwres.wres.vs.ipred.pred()
: absolute population weighted residuals (|WRES|) vs
population predictions (PRED) and absolute individual weighted residuals
(|IWRES|) vs individual predictions (IPRED)
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
absval.wres.vs.pred
,
absval.iwres.vs.ipred
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb ## A vanilla plot absval.iwres.wres.vs.ipred.pred(xpdb) absval.iwres.cwres.vs.ipred.pred(xpdb) ## Custom colours and symbols absval.iwres.cwres.vs.ipred.pred(xpdb, cex=0.6, pch=8, col=1)
## Here we load the example xpose database xpdb <- simpraz.xpdb ## A vanilla plot absval.iwres.wres.vs.ipred.pred(xpdb) absval.iwres.cwres.vs.ipred.pred(xpdb) ## Custom colours and symbols absval.iwres.cwres.vs.ipred.pred(xpdb, cex=0.6, pch=8, col=1)
box and whisker plots of the absolute value of the individual weighted residuals vs. covariates
absval.iwres.vs.cov.bw(object, xlb = "|iWRES|", main = "Default", ...)
absval.iwres.vs.cov.bw(object, xlb = "|iWRES|", main = "Default", ...)
object |
An "xpose.data" object. |
xlb |
A string giving the label for the x-axis. |
main |
A string giving the plot title or |
... |
Other arguments passed to |
An xpose.multiple.plot object
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
absolute value of the individual weighted residuals vs. the independent variable
absval.iwres.vs.idv( object, ylb = "|iWRES|", smooth = TRUE, idsdir = "up", type = "p", ... )
absval.iwres.vs.idv( object, ylb = "|iWRES|", smooth = TRUE, idsdir = "up", type = "p", ... )
object |
An "xpose.data" object. |
ylb |
A string giving the label for the y-axis. |
smooth |
A |
idsdir |
a string indicating the directions of the extremes to include in labelling. Possible values are "up", "down" and "both". |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
... |
Other arguments passed to |
A lattice object
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
This is a plot of absolute individual weighted residuals (|IWRES|) vs
individual predictions (IPRED), a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.default
function.
Most of the options take their default values from xpose.data object but may
be overridden by supplying them as arguments.
absval.iwres.vs.ipred( object, ylb = "|iWRES|", type = "p", ids = FALSE, idsdir = "up", smooth = TRUE, ... )
absval.iwres.vs.ipred( object, ylb = "|iWRES|", type = "p", ids = FALSE, idsdir = "up", smooth = TRUE, ... )
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
ids |
Should id values be displayed? |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Returns an xyplot of |IWRES| vs IPRED.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
,
runsum
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.iwres.vs.ipred(xpdb) ## A conditioning plot absval.iwres.vs.ipred(xpdb, by="HCTZ") ## Custom heading and axis labels absval.iwres.vs.ipred(xpdb, main="My conditioning plot", ylb="|IWRES|", xlb="IPRED") ## Custom colours and symbols, no IDs absval.iwres.vs.ipred(xpdb, cex=0.6, pch=3, col=1, ids=FALSE)
## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.iwres.vs.ipred(xpdb) ## A conditioning plot absval.iwres.vs.ipred(xpdb, by="HCTZ") ## Custom heading and axis labels absval.iwres.vs.ipred(xpdb, main="My conditioning plot", ylb="|IWRES|", xlb="IPRED") ## Custom colours and symbols, no IDs absval.iwres.vs.ipred(xpdb, cex=0.6, pch=3, col=1, ids=FALSE)
This is a plot of absolute individual weighted residuals (|IWRES|) vs
individual predictions (IPRED) conditioned by covariates, a specific
function in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
absval.iwres.vs.ipred.by.cov( object, ylb = "|IWRES|", idsdir = "up", type = "p", smooth = TRUE, main = "Default", ... )
absval.iwres.vs.ipred.by.cov( object, ylb = "|IWRES|", idsdir = "up", type = "p", smooth = TRUE, main = "Default", ... )
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Returns a stack of xyplots of |IWRES| vs IPRED, conditioned by covariates.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
absval.iwres.vs.ipred
,
xpose.plot.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.iwres.vs.ipred.by.cov(xpdb) ## Custom axis labels absval.iwres.vs.ipred.by.cov(xpdb, ylb="|IWRES|", xlb="IPRED") ## Custom colours and symbols, no IDs absval.iwres.vs.ipred.by.cov(xpdb, cex=0.6, pch=3, col=1, ids=FALSE) ## End(Not run)
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.iwres.vs.ipred.by.cov(xpdb) ## Custom axis labels absval.iwres.vs.ipred.by.cov(xpdb, ylb="|IWRES|", xlb="IPRED") ## Custom colours and symbols, no IDs absval.iwres.vs.ipred.by.cov(xpdb, cex=0.6, pch=3, col=1, ids=FALSE) ## End(Not run)
This is a plot of absolute individual weighted residuals (|IWRES|) vs
individual predictions (PRED) or independent variable (IDV), specific
functions in Xpose 4. These functions are wrappers encapsulating arguments
to the xpose.plot.default
function. Most of the options take their
default values from xpose.data object but may be overridden by supplying
them as arguments.
absval.iwres.vs.pred( object, ylb = "|IWRES|", smooth = TRUE, idsdir = "up", type = "p", ... )
absval.iwres.vs.pred( object, ylb = "|IWRES|", smooth = TRUE, idsdir = "up", type = "p", ... )
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
... |
Other arguments passed to |
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Returns an xyplot of |IWRES| vs PRED or |IWRES| vs IDV.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## End(Not run) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.iwres.vs.pred(xpdb) ## A conditioning plot absval.iwres.vs.pred(xpdb, by="HCTZ") ## Custom heading and axis labels absval.iwres.vs.pred(xpdb, main="My conditioning plot", ylb="|IWRES|", xlb="PRED") ## Custom colours and symbols, no IDs absval.iwres.vs.pred(xpdb, cex=0.6, pch=3, col=1, ids=FALSE)
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## End(Not run) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.iwres.vs.pred(xpdb) ## A conditioning plot absval.iwres.vs.pred(xpdb, by="HCTZ") ## Custom heading and axis labels absval.iwres.vs.pred(xpdb, main="My conditioning plot", ylb="|IWRES|", xlb="PRED") ## Custom colours and symbols, no IDs absval.iwres.vs.pred(xpdb, cex=0.6, pch=3, col=1, ids=FALSE)
This creates a stack of box and whisker plot of absolute population weighted
residuals (|WRES| or |iWRES|) vs covariates. It is a wrapper encapsulating
arguments to the xpose.plot.bw
function. Most of the options take
their default values from the xpose.data object but may be overridden by
supplying them as arguments.
absval.wres.vs.cov.bw(object, xlb = "|WRES|", main = "Default", ...)
absval.wres.vs.cov.bw(object, xlb = "|WRES|", main = "Default", ...)
object |
An xpose.data object. |
xlb |
A string giving the label for the x-axis. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
A wide array of extra options controlling box-and-whisker plots are
available. See xpose.plot.bw
for details.
Returns a stack of box-and-whisker plots of |WRES| vs covariates.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.bw
, xpose.panel.bw
,
bwplot
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.wres.vs.cov.bw(xpdb) ## A custom plot absval.wres.vs.cov.bw(xpdb, bwdotcol="white", bwdotpch=15, bwreccol="red", bwrecfill="red", bwumbcol="red", bwoutpch=5, bwoutcol="black") ## A vanilla plot using IWRES absval.iwres.vs.cov.bw(xpdb) ## End(Not run)
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.wres.vs.cov.bw(xpdb) ## A custom plot absval.wres.vs.cov.bw(xpdb, bwdotcol="white", bwdotpch=15, bwreccol="red", bwrecfill="red", bwumbcol="red", bwoutpch=5, bwoutcol="black") ## A vanilla plot using IWRES absval.iwres.vs.cov.bw(xpdb) ## End(Not run)
This is a plot of the absolute value of the CWRES (default, other residuals
as an option) vs independent variable, a specific function in Xpose 4. It is
a wrapper encapsulating arguments to the xpose.plot.default
function. Most of the options take their default values from the xpose.data
object but may be overridden by supplying them as arguments.
absval.wres.vs.idv( object, idv = "idv", wres = "Default", ylb = "Default", smooth = TRUE, idsdir = "up", type = "p", ... )
absval.wres.vs.idv( object, idv = "idv", wres = "Default", ylb = "Default", smooth = TRUE, idsdir = "up", type = "p", ... )
object |
An xpose.data object. |
idv |
the independent variable. |
wres |
Which weighted residual to use. |
ylb |
Y-axis label. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
... |
Other arguments passed to |
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Returns an xyplot of |CWRES| vs idv (often TIME, defined by
xvardef
).
Andrew Hooker
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, compute.cwres
,
xpose.data-class
help
, ~~~
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## End(Not run) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.wres.vs.idv(xpdb) ## A conditioning plot absval.wres.vs.idv(xpdb, by="HCTZ") ## Custom heading and axis labels absval.wres.vs.idv(xpdb, main="Hello World", ylb="|CWRES|", xlb="IDV") ## Custom colours and symbols absval.wres.vs.idv(xpdb, cex=0.6, pch=3, col=1) ## using the NPDEs instead of CWRES absval.wres.vs.idv(xpdb,wres="NPDE") ## subsets absval.wres.vs.idv(xpdb,subset="TIME<10")
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## End(Not run) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.wres.vs.idv(xpdb) ## A conditioning plot absval.wres.vs.idv(xpdb, by="HCTZ") ## Custom heading and axis labels absval.wres.vs.idv(xpdb, main="Hello World", ylb="|CWRES|", xlb="IDV") ## Custom colours and symbols absval.wres.vs.idv(xpdb, cex=0.6, pch=3, col=1) ## using the NPDEs instead of CWRES absval.wres.vs.idv(xpdb,wres="NPDE") ## subsets absval.wres.vs.idv(xpdb,subset="TIME<10")
This is a plot of absolute population weighted residuals (|WRES|) vs
population predictions (PRED), a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.default
function.
Most of the options take their default values from xpose.data object but may
be overridden by supplying them as arguments.
absval.wres.vs.pred( object, ylb = "|WRES|", idsdir = "up", type = "p", smooth = TRUE, ... )
absval.wres.vs.pred( object, ylb = "|WRES|", idsdir = "up", type = "p", smooth = TRUE, ... )
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Returns an xyplot of |WRES| vs PRED.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## End(Not run) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.wres.vs.pred(xpdb) ## A conditioning plot absval.wres.vs.pred(xpdb, by="HCTZ") ## Custom heading and axis labels absval.wres.vs.pred(xpdb, main="My conditioning plot", ylb="|WRES|", xlb="PRED") ## Custom colours and symbols absval.wres.vs.pred(xpdb, cex=0.6, pch=19, col=1, smcol="blue", smlty=2)
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## End(Not run) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.wres.vs.pred(xpdb) ## A conditioning plot absval.wres.vs.pred(xpdb, by="HCTZ") ## Custom heading and axis labels absval.wres.vs.pred(xpdb, main="My conditioning plot", ylb="|WRES|", xlb="PRED") ## Custom colours and symbols absval.wres.vs.pred(xpdb, cex=0.6, pch=19, col=1, smcol="blue", smlty=2)
This is a plot of absolute population weighted residuals (|WRES|) vs
population predictions (PRED) conditioned by covariates, a specific function
in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
absval.wres.vs.pred.by.cov( object, ylb = "|WRES|", type = "p", smooth = TRUE, ids = FALSE, idsdir = "up", main = "Default", ... )
absval.wres.vs.pred.by.cov( object, ylb = "|WRES|", type = "p", smooth = TRUE, ids = FALSE, idsdir = "up", main = "Default", ... )
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
type |
Type of plot. The default is points only ("p"), but lines ("l") and both ("b") are also available. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
ids |
Logical. Should id labels on points be shown? |
idsdir |
Direction for displaying point labels. The default is "up", since we are displaying absolute values. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Returns a stack of xyplots of |WRES| vs PRED, conditioned on covariates.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
absval.wres.vs.pred
,
xpose.plot.default
, xpose.panel.default
,
xyplot
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.wres.vs.pred.by.cov(xpdb) ## Custom axis labels absval.wres.vs.pred.by.cov(xpdb, ylb="|CWRES|", xlb="PRED") ## Custom colours and symbols, IDs absval.wres.vs.pred.by.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE) ## End(Not run)
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot absval.wres.vs.pred.by.cov(xpdb) ## Custom axis labels absval.wres.vs.pred.by.cov(xpdb, ylb="|CWRES|", xlb="PRED") ## Custom colours and symbols, IDs absval.wres.vs.pred.by.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE) ## End(Not run)
These functions transform existing Xpose 4 data columns, adding new columns.
add.absval(object, listall = TRUE, classic = FALSE) add.dichot(object, listall = TRUE, classic = FALSE) add.exp(object, listall = TRUE, classic = FALSE) add.log(object, listall = TRUE, classic = FALSE) add.tad(object, classic = FALSE)
add.absval(object, listall = TRUE, classic = FALSE) add.dichot(object, listall = TRUE, classic = FALSE) add.exp(object, listall = TRUE, classic = FALSE) add.log(object, listall = TRUE, classic = FALSE) add.tad(object, classic = FALSE)
object |
An |
listall |
A logical operator specifying whether the items in the database should be listed. |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
These functions may be used to create new data columns within the Xpose data object by transforming existing ones.
An xpose.data
object (classic == FALSE) or null
(classic == TRUE).
add.absval()
: Create a column containing the absolute values of data
in another column.
add.dichot()
: Create a categorical data column based on a continuous data column
add.exp()
: Create an exponentiated version of an existing variable
add.log()
: Create a log transformation of an existing variable
add.tad()
: Create a time-after-dose
(TAD) data item based upon the dose and time variables in the dataset.
Niclas Jonsson, Justin Wilkins and Andrew Hooker
Other data functions:
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Create a column containing the absolute values of data in another ## column add.absval(xpdb5) ## Create a categorical data column based on a continuous data column, ## and do not list variables add.dichot(xpdb5, listall = FALSE) ## Create a column containing the exponentiated values of data in ## another column add.exp(xpdb5) ## Create a column containing log-transformations of data in another ## column add.log(xpdb5) ## Create a time-after-dose column add.tad(xpdb5) ## End(Not run)
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Create a column containing the absolute values of data in another ## column add.absval(xpdb5) ## Create a categorical data column based on a continuous data column, ## and do not list variables add.dichot(xpdb5, listall = FALSE) ## Create a column containing the exponentiated values of data in ## another column add.exp(xpdb5) ## Create a column containing log-transformations of data in another ## column add.log(xpdb5) ## Create a time-after-dose column add.tad(xpdb5) ## End(Not run)
These functions take an array of values and labels or an array of text and add it to one or many grid viewports in an orderly fashion.
add.grid.table( txt, col.nams = NULL, ystart, xstart = unit(0, "npc"), start.pt = 1, vp, vp.num = 1, minrow = 5, cell.padding = 0.5, mult.col.padding = 1, col.optimize = TRUE, equal.widths = FALSE, space.before.table = 1, center.table = FALSE, use.rect = FALSE, fill.type = NULL, fill.col = "grey", cell.lines.lty = 0, ... )
add.grid.table( txt, col.nams = NULL, ystart, xstart = unit(0, "npc"), start.pt = 1, vp, vp.num = 1, minrow = 5, cell.padding = 0.5, mult.col.padding = 1, col.optimize = TRUE, equal.widths = FALSE, space.before.table = 1, center.table = FALSE, use.rect = FALSE, fill.type = NULL, fill.col = "grey", cell.lines.lty = 0, ... )
txt |
The text or table values to add to the grid object. |
col.nams |
the column names of the table values |
ystart |
The y location to start printing in the grid viewport |
xstart |
The x location to start printing in the grid viewport |
start.pt |
The start point (row) in the table array to start printing |
vp |
The viewport(s) to add the table or text to |
vp.num |
the viewport number in |
minrow |
The minimum rows before printing more columns to use in the table |
cell.padding |
padding between cells in the table |
mult.col.padding |
padding between multiple columns in the table |
col.optimize |
should we column optimize ( |
equal.widths |
Should all columns have equal widths |
space.before.table |
Should there be a space before the table |
center.table |
should we center the table in the viewport? |
use.rect |
Should we make rectangles with background color around the
table entries |
fill.type |
Which rectangles should be filled. Allowed values are
|
fill.col |
The color of the filled rectangles |
cell.lines.lty |
The line-type for the lines between the cells, using the same values as lty. |
... |
Other arguments passed to the various functions. |
A List is returned with the following components
ystart |
new starting point for new text |
stop.pt |
null if everything gets printed |
vp.num |
the viewport needed for next text printed |
xpose.table |
A grob object that can be plotted. |
Andrew Hooker
This creates a stack of four plots, comparing absolute values of PRED, absolute values of IPRED, delta CWRES (or WRES) and delta IWRES estimates for the two specified model fits.
add.model.comp( object, object.ref = NULL, onlyfirst = FALSE, inclZeroWRES = FALSE, subset = xsubset(object), main = "Default", force.wres = FALSE, ... )
add.model.comp( object, object.ref = NULL, onlyfirst = FALSE, inclZeroWRES = FALSE, subset = xsubset(object), main = "Default", force.wres = FALSE, ... )
object |
An xpose.data object. |
object.ref |
An xpose.data object. If not supplied, the user will be prompted. |
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. The default is TRUE. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
main |
The title of the plot. If |
force.wres |
Should we use the WRES in the plots instead of CWRES
(logical |
... |
Other arguments passed to |
Four model comparison plots are displayed in sequence.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Returns a stack of plots comprising comparisons of absolute values of PRED, absolute values of IPRED, absolute differences in CWRES (or WRES) and absolute differences in IWRES for the two specified runs.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
compute.cwres
, xpose.prefs-class
,
xpose.data-class
## Not run: ## We expect to find the required NONMEM run and table files for runs ## 5 and 6 in the current working directory xpdb5 <- xpose.data(5) xpdb6 <- xpose.data(6) ## A vanilla plot, without prompts add.model.comp(xpdb5, xpdb6, prompt = FALSE) ## Custom colours and symbols, no user IDs add.model.comp(xpdb5, xpdb6, cex=0.6, pch=8, col=1, ids=NULL) ## End(Not run)
## Not run: ## We expect to find the required NONMEM run and table files for runs ## 5 and 6 in the current working directory xpdb5 <- xpose.data(5) xpdb6 <- xpose.data(6) ## A vanilla plot, without prompts add.model.comp(xpdb5, xpdb6, prompt = FALSE) ## Custom colours and symbols, no user IDs add.model.comp(xpdb5, xpdb6, cex=0.6, pch=8, col=1, ids=NULL) ## End(Not run)
This is a compound plot consisting of plots of weighted population residuals
(WRES) vs population predictions (PRED), absolute individual weighted
residuals (|IWRES|) vs independent variable (IDV), WRES vs IDV, and weighted
population residuals vs log(IDV), a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the wres.vs.pred
,
iwres.vs.idv
and wres.vs.idv
functions.
addit.gof( object, type = "p", title.size = 0.02, title.just = c("center", "top"), main = "Default", force.wres = FALSE, ... )
addit.gof( object, type = "p", title.size = 0.02, title.just = c("center", "top"), main = "Default", force.wres = FALSE, ... )
object |
An xpose.data object. |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
title.size |
Amount, in a range of 0-1, of how much space the title should take up in the plot) |
title.just |
how the title should be justified |
main |
The title of the plot. If |
force.wres |
Plot the WRES even if other residuals are available. |
... |
Other arguments passed to |
Four additional goodness-of-fit plots are presented side by side for comparison.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
and
xpose.multiple.plot.default
for details.
Returns a compound plot comprising plots of weighted population residuals (WRES) vs population predictions (PRED), absolute individual weighted residuals (|IWRES|) vs independent variable (IDV), WRES vs IDV, and weighted population residuals vs log(IDV).
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
wres.vs.pred
, iwres.vs.idv
,
wres.vs.idv
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb ## A vanilla plot addit.gof(xpdb)
## Here we load the example xpose database xpdb <- simpraz.xpdb ## A vanilla plot addit.gof(xpdb)
This is an autocorrelation plot of conditional weighted residuals, a specific function in Xpose 4. Most of the options take their default values from xpose.data object but may be overridden by supplying them as arguments.
autocorr.cwres( object, type = "p", smooth = TRUE, ids = F, main = "Default", ... )
autocorr.cwres( object, type = "p", smooth = TRUE, ids = F, main = "Default", ... )
object |
An xpose.data object. |
type |
1-character string giving the type of plot desired. The
following values are possible, for details, see |
smooth |
Logical value indicating whether a smooth should be superimposed. |
ids |
A logical value indicating whether text labels should be used as
plotting symbols (the variable used for these symbols indicated by the
|
main |
The title of the plot. If |
... |
Other arguments passed to |
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
Returns an autocorrelation plot for conditional weighted population residuals (CWRES).
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xyplot
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## End(Not run) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot autocorr.cwres(xpdb) ## A conditioning plot autocorr.cwres(xpdb, dilution=TRUE) ## Custom heading and axis labels autocorr.cwres(xpdb, main="My conditioning plot", ylb="|CWRES|", xlb="PRED") ## Custom colours and symbols, IDs autocorr.cwres(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## End(Not run) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot autocorr.cwres(xpdb) ## A conditioning plot autocorr.cwres(xpdb, dilution=TRUE) ## Custom heading and axis labels autocorr.cwres(xpdb, main="My conditioning plot", ylb="|CWRES|", xlb="PRED") ## Custom colours and symbols, IDs autocorr.cwres(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
autocorrelation of the individual weighted residuals
autocorr.iwres( object, type = "p", smooth = TRUE, ids = F, main = "Default", ... )
autocorr.iwres( object, type = "p", smooth = TRUE, ids = F, main = "Default", ... )
object |
An "xpose.data" object. |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
smooth |
A |
ids |
A logical value indicating whether text labels should be used as
plotting symbols (the variable used for these symbols indicated by the
|
main |
A string giving the plot title or |
... |
Other arguments passed to |
A Lattice object
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
This is an autocorrelation plot of weighted residuals. Most of the options take their default values from the xpose.data object but may be overridden by supplying them as arguments.
autocorr.wres( object, type = "p", smooth = TRUE, ids = F, main = "Default", ... )
autocorr.wres( object, type = "p", smooth = TRUE, ids = F, main = "Default", ... )
object |
An xpose.data object. |
type |
1-character string giving the type of plot desired. The
following values are possible, for details, see |
smooth |
Logical value indicating whether a smooth should be superimposed. |
ids |
A logical value indicating whether text labels should be used as
plotting symbols (the variable used for these symbols indicated by the
|
main |
The title of the plot. If |
... |
Other arguments passed to |
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Returns an autocorrelation plot for weighted population residuals (WRES) or individual weighted residuals (IWRES).
E. Niclas Jonsson, Mats Karlsson, Justin Wilkins & Andrew Hooker
xyplot
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## End(Not run) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot autocorr.wres(xpdb) ## A conditioning plot autocorr.wres(xpdb, dilution=TRUE) ## Custom heading and axis labels autocorr.wres(xpdb, main="My conditioning plot", ylb="|CWRES|", xlb="PRED") ## Custom colours and symbols, IDs autocorr.wres(xpdb, cex=0.6, pch=3, col=1, ids=TRUE) ## A vanilla plot with IWRES autocorr.iwres(xpdb)
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## End(Not run) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot autocorr.wres(xpdb) ## A conditioning plot autocorr.wres(xpdb, dilution=TRUE) ## Custom heading and axis labels autocorr.wres(xpdb, main="My conditioning plot", ylb="|CWRES|", xlb="PRED") ## Custom colours and symbols, IDs autocorr.wres(xpdb, cex=0.6, pch=3, col=1, ids=TRUE) ## A vanilla plot with IWRES autocorr.iwres(xpdb)
This is a compound plot consisting of plots of observations (DV) vs
population predictions (PRED), observations (DV) vs individual predictions
(IPRED), absolute individual weighted residuals (|IWRES|) vs IPRED, and
weighted population residuals (CWRES) vs independent variable (IDV), a
specific function in Xpose 4. WRES are also supported. It is a wrapper
encapsulating arguments to the dv.vs.pred
, dv.vs.ipred
,
absval.iwres.vs.ipred
and wres.vs.idv
functions.
basic.gof(object, force.wres = FALSE, main = "Default", use.log = FALSE, ...)
basic.gof(object, force.wres = FALSE, main = "Default", use.log = FALSE, ...)
object |
An xpose.data object. |
force.wres |
Should the plots use WRES? Values can be
|
main |
The title of the plot. If |
use.log |
Should we use log transformations in the plots? |
... |
Other arguments passed to |
Four basic goodness-of-fit plots are presented side by side for comparison.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
basic.gof.cwres
is just a wrapper for basic.gof
with
use.cwres=TRUE
.
Returns a compound plot comprising plots of observations (DV) vs population predictions (PRED), DV vs individual predictions (IPRED), absolute individual weighted residuals (|IWRES|) vs IPRED, and weighted populations residuals (WRES) vs the independent variable (IDV).
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
dv.vs.pred
, dv.vs.ipred
,
absval.iwres.vs.ipred
, wres.vs.idv
,
cwres.vs.idv
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
compute.cwres
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
basic.gof(simpraz.xpdb)
basic.gof(simpraz.xpdb)
This creates a stack of four plots, comparing PRED, IPRED, WRES (or CWRES), and IWRES estimates for the two specified model fits.
basic.model.comp( object, object.ref = NULL, onlyfirst = FALSE, inclZeroWRES = FALSE, subset = xsubset(object), main = "Default", force.wres = FALSE, ... )
basic.model.comp( object, object.ref = NULL, onlyfirst = FALSE, inclZeroWRES = FALSE, subset = xsubset(object), main = "Default", force.wres = FALSE, ... )
object |
An xpose.data object. |
object.ref |
An xpose.data object. If not supplied, the user will be prompted. |
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. The default is TRUE. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
main |
The title of the plot. If |
force.wres |
Force function to use WRES? |
... |
Other arguments passed to |
Four basic model comparison plots are displayed in sequence.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
for details.
Returns a stack of plots comprising comparisons of PRED, IPRED, WRES (or CWRES) and IWRES for the two specified runs.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
compute.cwres
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## We expect to find the required NONMEM run and table files for runs ## 5 and 6 in the current working directory xpdb5 <- xpose.data(5) xpdb6 <- xpose.data(6) ## A vanilla plot, without prompts basic.model.comp(xpdb5, xpdb6, prompt = FALSE) ## Custom colours and symbols, no user IDs basic.model.comp.cwres(xpdb5, xpdb6, cex=0.6, pch=8, col=1, ids=NULL) ## End(Not run)
## Not run: ## We expect to find the required NONMEM run and table files for runs ## 5 and 6 in the current working directory xpdb5 <- xpose.data(5) xpdb6 <- xpose.data(6) ## A vanilla plot, without prompts basic.model.comp(xpdb5, xpdb6, prompt = FALSE) ## Custom colours and symbols, no user IDs basic.model.comp.cwres(xpdb5, xpdb6, cex=0.6, pch=8, col=1, ids=NULL) ## End(Not run)
bootstrap
tool in
PsN
Reads results from the bootstrap
tool in PsN
and then creates histograms.
boot.hist( results.file = "raw_results_run1.csv", incl.ids.file = "included_individuals1.csv", min.failed = FALSE, cov.failed = FALSE, cov.warnings = FALSE, boundary = FALSE, showOriginal = TRUE, showMean = FALSE, showMedian = FALSE, showPCTS = FALSE, PCTS = c(0.025, 0.975), excl.id = c(), layout = NULL, sort.plots = TRUE, main = "Default", ... )
boot.hist( results.file = "raw_results_run1.csv", incl.ids.file = "included_individuals1.csv", min.failed = FALSE, cov.failed = FALSE, cov.warnings = FALSE, boundary = FALSE, showOriginal = TRUE, showMean = FALSE, showMedian = FALSE, showPCTS = FALSE, PCTS = c(0.025, 0.975), excl.id = c(), layout = NULL, sort.plots = TRUE, main = "Default", ... )
results.file |
The location of the results file from the
|
incl.ids.file |
The location of the included ids file from the
|
min.failed |
Should NONMEM runs that had failed minimization be
skipped? |
cov.failed |
Should NONMEM runs that had a failed covariance step be
skipped? |
cov.warnings |
Should NONMEM runs that had covariance step warnings be
skipped? |
boundary |
Should NONMEM runs that had boundary warnings be skipped?
|
showOriginal |
Should we show the value from the original NONMEM run in
the histograms? |
showMean |
Should we show the mean of the histogram data? |
showMedian |
Should we show the median of the histogram data?
|
showPCTS |
Should we show the percentiles of the histogram data?
|
PCTS |
the percentiles to show. Can be a vector of any length. For
example, |
excl.id |
Vector of id numbers to exclude. |
layout |
Layout of plots. A vector of number of rows and columns in
each plot. |
sort.plots |
Should the plots be sorted based on type of parameter. Sorting on parameters, standard errors, shrinkage and eigenvalues. |
main |
The title of the plot. |
... |
Additional arguments that can be passed to xpose.plot.histogram, xpose.panel.histogram, histogram and other lattice-package functions. |
A lattice object
Andrew Hooker
xpose.plot.histogram, xpose.panel.histogram, histogram and other lattice-package functions.
Other PsN functions:
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: boot.hist(results.file="./boot1/raw_results_run1.csv", incl.ids.file="./boot1/included_individuals1.csv") ## End(Not run)
## Not run: boot.hist(results.file="./boot1/raw_results_run1.csv", incl.ids.file="./boot1/included_individuals1.csv") ## End(Not run)
This functions prints some summary information for a bootgam performed in Xpose, or for a bootscm performed in PsN.
bootgam.print(bootgam.obj = NULL)
bootgam.print(bootgam.obj = NULL)
bootgam.obj |
The bootgam or bootscm object. |
No value returned
Ron Keizer
## Not run: bootgam.print(current.bootgam) # Print summary for the current Xpose bootgam object bootgam.print(current.bootscm) # Print summary for the current Xpose bootscm object ## End(Not run)
## Not run: bootgam.print(current.bootgam) # Print summary for the current Xpose bootgam object bootgam.print(current.bootscm) # Print summary for the current Xpose bootscm object ## End(Not run)
This function imports data generated by the PsN boot_scm function into the Xpose / R environment.
bootscm.import( scm.folder = NULL, silent = FALSE, n.bs = NULL, cov.recoding = NULL, group.by.cov = NULL, skip.par.est.import = FALSE, dofv.forward = 3.84, dofv.backward = 6.64, runno = NULL, return.obj = FALSE )
bootscm.import( scm.folder = NULL, silent = FALSE, n.bs = NULL, cov.recoding = NULL, group.by.cov = NULL, skip.par.est.import = FALSE, dofv.forward = 3.84, dofv.backward = 6.64, runno = NULL, return.obj = FALSE )
scm.folder |
The folder in which the PsN-generated bootscm data are. |
silent |
Don't output any progress report. Default is FALSE. |
n.bs |
The number of bootstraps performed. Defaults to 100. |
cov.recoding |
For categorical covariates that are recoded to dichotomous covariates within the bootscm configuration file, a list can be specified containing data frames for recoding. See the example below for details. |
group.by.cov |
Group inclusion frequencies by covariate, instead of calculating them per parameter-covariates relationship. Default is NULL, which means that the user will be asked to make a choice. |
skip.par.est.import |
Skip the import of all parameter estimates (in each final model in all scm's, as well as parameter estimates in first step of each scm). These data are required to make plot that show inclusion bias and correlation in parameter estimates. Importing these data takes a bit of time (may take a minute or so), so if you don't intend to make these plots anyhow this step can be skipped. Default is FALSE. |
dofv.forward |
dOFV value used in forward step of scm. |
dofv.backward |
dOFV value used in backward step of scm. |
runno |
The run-number of the base model for this bootSCM. |
return.obj |
Should the bootscm object be returned by the function? |
Ron Keizer
Other bootscm:
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Other PsN functions:
boot.hist()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Categorical observations vs. independent variable using stacked bars.
cat.dv.vs.idv.sb( object, dv = xvardef("dv", object), idv = xvardef("idv", object), by = NULL, groups = dv, force.by.factor = FALSE, recur = F, xlb = idv, ylb = "Proportion", subset = NULL, vary.width = T, level.to.plot = NULL, refactor.levels = TRUE, main = xpose.create.title.text(idv, dv, "Proportions of", object, subset = subset, ...), stack = TRUE, horizontal = FALSE, strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)), scales = list(), inclZeroWRES = TRUE, onlyfirst = FALSE, samp = NULL, aspect = object@[email protected]$aspect, auto.key = "Default", mirror = FALSE, mirror.aspect = "fill", pass.plot.list = FALSE, x.cex = NULL, y.cex = NULL, main.cex = NULL, mirror.internal = list(strip.missing = missing(strip)), ... )
cat.dv.vs.idv.sb( object, dv = xvardef("dv", object), idv = xvardef("idv", object), by = NULL, groups = dv, force.by.factor = FALSE, recur = F, xlb = idv, ylb = "Proportion", subset = NULL, vary.width = T, level.to.plot = NULL, refactor.levels = TRUE, main = xpose.create.title.text(idv, dv, "Proportions of", object, subset = subset, ...), stack = TRUE, horizontal = FALSE, strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)), scales = list(), inclZeroWRES = TRUE, onlyfirst = FALSE, samp = NULL, aspect = object@Prefs@Graph.prefs$aspect, auto.key = "Default", mirror = FALSE, mirror.aspect = "fill", pass.plot.list = FALSE, x.cex = NULL, y.cex = NULL, main.cex = NULL, mirror.internal = list(strip.missing = missing(strip)), ... )
object |
Xpose data object. |
dv |
The dependent variable (e.g. |
idv |
The independent variable (e.g. |
by |
Conditioning variable |
groups |
How we should group values in each conditional plot. |
force.by.factor |
Should we force the data to be treated as factors? |
recur |
Not used. |
xlb |
A string giving the label for the x-axis. |
ylb |
A string giving the label for the y-axis. |
subset |
Subset of data. |
vary.width |
Should we vary the width of the bars to match amount of information? |
level.to.plot |
Which levels of the DV to plot. |
refactor.levels |
Should we refactor the levels? |
main |
The title of the plot. |
stack |
Should we stack the bars? |
horizontal |
Should the bars be horizontal? |
strip |
Defining how the strips should appear in the conditioning plots. |
scales |
Scales argument to |
inclZeroWRES |
Include rows with WRES=0? |
onlyfirst |
Only include first data point for each individual? |
samp |
Sample to use in mirror plot (a number). |
aspect |
Aspect argument to |
auto.key |
Make a legend. |
mirror |
Mirror can be |
mirror.aspect |
Aspect for mirror. |
pass.plot.list |
Should the plot list be passed back to user? |
x.cex |
Size of x axis label. |
y.cex |
Size of Y axis label. |
main.cex |
Size of Title. |
mirror.internal |
Internal stuff. |
... |
Other arguments passed to function. |
Andrew Hooker
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## read in table files runno <- 45 xpdb <- xpose.data(runno) ## make some stacked bar plots cat.dv.vs.idv.sb(xpdb,idv=NULL,stack=F) cat.dv.vs.idv.sb(xpdb,idv=NULL,stack=F,by="DOSE") cat.dv.vs.idv.sb(xpdb,idv="DOSE") cat.dv.vs.idv.sb(xpdb,idv=NULL,stack=F,by="TIME") cat.dv.vs.idv.sb(xpdb,idv="TIME") cat.dv.vs.idv.sb(xpdb,idv="CAVH") cat.dv.vs.idv.sb(xpdb,idv="TIME",by="DOSE",scales=list(x=list(rot=45))) ## make some mirror plots cat.dv.vs.idv.sb(xpdb,idv="DOSE",mirror=1) cat.dv.vs.idv.sb(xpdb,idv="CAVH",mirror=1,auto.key=F) ## End(Not run)
## Not run: ## read in table files runno <- 45 xpdb <- xpose.data(runno) ## make some stacked bar plots cat.dv.vs.idv.sb(xpdb,idv=NULL,stack=F) cat.dv.vs.idv.sb(xpdb,idv=NULL,stack=F,by="DOSE") cat.dv.vs.idv.sb(xpdb,idv="DOSE") cat.dv.vs.idv.sb(xpdb,idv=NULL,stack=F,by="TIME") cat.dv.vs.idv.sb(xpdb,idv="TIME") cat.dv.vs.idv.sb(xpdb,idv="CAVH") cat.dv.vs.idv.sb(xpdb,idv="TIME",by="DOSE",scales=list(x=list(rot=45))) ## make some mirror plots cat.dv.vs.idv.sb(xpdb,idv="DOSE",mirror=1) cat.dv.vs.idv.sb(xpdb,idv="CAVH",mirror=1,auto.key=F) ## End(Not run)
Categorical (visual) predictive check plots.
cat.pc( object, dv = xvardef("dv", object), idv = xvardef("idv", object), level.to.plot = NULL, subset = NULL, histo = T, median.line = F, PI.lines = F, xlb = if (histo) { paste("Proportion of ", dv) } else { paste(idv) }, ylb = if (histo) { paste("Percent of Total") } else { paste("Proportion of Total") }, main = xpose.create.title.text(NULL, dv, "Predictive check of", object, subset = subset, ...), strip = "Default", ... )
cat.pc( object, dv = xvardef("dv", object), idv = xvardef("idv", object), level.to.plot = NULL, subset = NULL, histo = T, median.line = F, PI.lines = F, xlb = if (histo) { paste("Proportion of ", dv) } else { paste(idv) }, ylb = if (histo) { paste("Percent of Total") } else { paste("Proportion of Total") }, main = xpose.create.title.text(NULL, dv, "Predictive check of", object, subset = subset, ...), strip = "Default", ... )
object |
Xpose data object. |
dv |
The dependent variable (e.g. |
idv |
The independent variable (e.g. |
level.to.plot |
The levels to plot. |
subset |
Subset of data. |
histo |
If |
median.line |
Make a median line? |
PI.lines |
Make prediction interval lines? |
xlb |
Label for x axis. |
ylb |
label for y axis. |
main |
Main title. |
strip |
Defining how the strips should appear in the conditioning plots. |
... |
Extra arguments passed to the function. |
Andrew C. Hooker
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## read in table files runno <- 45 xpdb <- xpose.data(runno) ## create proportion (visual) predictive check cat.pc(xpdb,idv=NULL) cat.pc(xpdb,idv="DOSE") cat.pc(xpdb,idv="DOSE",histo=F) cat.pc(xpdb,idv="TIME",histo=T,level.to.plot=1) ## End(Not run)
## Not run: ## read in table files runno <- 45 xpdb <- xpose.data(runno) ## create proportion (visual) predictive check cat.pc(xpdb,idv=NULL) cat.pc(xpdb,idv="DOSE") cat.pc(xpdb,idv="DOSE",histo=F) cat.pc(xpdb,idv="TIME",histo=T,level.to.plot=1) ## End(Not run)
These functions allow customization of Xpose's graphics settings.
change.ab.graph.par(object, classic = FALSE) change.bw.graph.par(object, classic = FALSE) change.cond.graph.par(object, classic = FALSE) change.dil.graph.par(object, classic = FALSE) change.label.par(object, classic = FALSE) change.lm.graph.par(object, classic = FALSE) change.misc.graph.par(object, classic = FALSE) change.pi.graph.par(object, classic = FALSE) change.smooth.graph.par(object, classic = FALSE)
change.ab.graph.par(object, classic = FALSE) change.bw.graph.par(object, classic = FALSE) change.cond.graph.par(object, classic = FALSE) change.dil.graph.par(object, classic = FALSE) change.label.par(object, classic = FALSE) change.lm.graph.par(object, classic = FALSE) change.misc.graph.par(object, classic = FALSE) change.pi.graph.par(object, classic = FALSE) change.smooth.graph.par(object, classic = FALSE)
object |
An |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
Settings can be saved and loaded using export.graph.par
and
import.graph.par
, respectively.
An xpose.data
object (classic == FALSE) or null
(classic == TRUE).
change.ab.graph.par()
: change settings for the line of
identity.
change.bw.graph.par()
: sets preferences for box-and-whisker plots
change.cond.graph.par()
: sets preferences for conditioning
change.dil.graph.par()
: responsible for dilution
preferences
change.label.par()
: responsible for labelling preferences
change.lm.graph.par()
: responsible for linear regression
lines.
change.misc.graph.par()
: sets basic graphics parameters,
including plot type, point type and size, colour, line type, and line width.
change.pi.graph.par()
: responsible for prediction interval plotting preferences
change.smooth.graph.par()
: sets preferences for loess smooths.
Niclas Jonsson & Justin Wilkins
xpose.plot.default
,xpose.panel.default
,
xpose.plot.bw
,xpose.panel.bw
,
xpose.plot.default
,import.graph.par
,
export.graph.par
,plot.default
,
par
,import.graph.par
,panel.abline
,
panel.lmline
,lm
,panel.loess
,
loess.smooth
,loess
,panel.bwplot
,
shingle
,reorder.factor
Other data functions:
add_transformed_columns
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Change default miscellaneous graphic preferences xpdb5 <- change.misc.graph.par(xpdb5) ## Change default linear regression line preferences, creating a new ## object xpdb5.a <- change.lm.graph.par(xpdb5) ## Change conditioning preferences xpdb5 <- change.cond.graph.par(xpdb5) ## End(Not run)
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Change default miscellaneous graphic preferences xpdb5 <- change.misc.graph.par(xpdb5) ## Change default linear regression line preferences, creating a new ## object xpdb5.a <- change.lm.graph.par(xpdb5) ## Change conditioning preferences xpdb5 <- change.cond.graph.par(xpdb5) ## End(Not run)
These functions allow viewing and changing of settings relating to subsets, categorical threshold values, documentation and numbers indicating missing data values.
change.cat.cont( object, listall = TRUE, classic = FALSE, to.cat.vec = NULL, to.cont.vec = NULL, change.type.vec = NULL, ... ) change.cat.cont( object, listall = TRUE, classic = FALSE, to.cat.vec = NULL, to.cont.vec = NULL, ... ) <- value change.cat.levels(object, classic = FALSE, cat.limit = NULL, ...) change.cat.levels(object, classic = FALSE, ...) <- value change.dv.cat.levels(object, classic = FALSE, dv.cat.limit = NULL, ...) change.dv.cat.levels(object, classic = FALSE, ...) <- value change.miss(object, classic = FALSE) change.subset(object, classic = FALSE) get.doc(object, classic = FALSE) set.doc(object, classic = FALSE)
change.cat.cont( object, listall = TRUE, classic = FALSE, to.cat.vec = NULL, to.cont.vec = NULL, change.type.vec = NULL, ... ) change.cat.cont( object, listall = TRUE, classic = FALSE, to.cat.vec = NULL, to.cont.vec = NULL, ... ) <- value change.cat.levels(object, classic = FALSE, cat.limit = NULL, ...) change.cat.levels(object, classic = FALSE, ...) <- value change.dv.cat.levels(object, classic = FALSE, dv.cat.limit = NULL, ...) change.dv.cat.levels(object, classic = FALSE, ...) <- value change.miss(object, classic = FALSE) change.subset(object, classic = FALSE) get.doc(object, classic = FALSE) set.doc(object, classic = FALSE)
object |
An |
listall |
A logical operator specifying whether the items in the database should be listed. |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
to.cat.vec |
A vector of strings specifying the names of the categorical variables that should be transformed to continuous. |
to.cont.vec |
A vector of strings specifying the names of the continuous variables that should be transformed to categorical. |
change.type.vec |
A vector of strings specifying the names of the variables that should be transformed to/from continuous/categorical. |
... |
arguments passed to other functions. |
value |
This is the value that will be replaced in the xpose data
object |
cat.limit |
The limit for which we treat a list of values as
categorical. If there are |
dv.cat.limit |
The limit for which we treat DV as categorical. If
there are |
An xpose.data
object, except get.doc
, which
returns the value of object@Doc.
change.cat.cont()
: allows interchange between categorical and continuous
data formats within the Xpose database. This in turn affects how plots are
drawn.
change.cat.cont(
object,
listall = TRUE,
classic = FALSE,
to.cat.vec = NULL,
to.cont.vec = NULL,
...
) <- value
: allows interchange between categorical and continuous
data formats within the Xpose database. This in turn affects how plots are
drawn.
change.cat.levels()
: change settings for the number of unique data
values required in a variable in order to define it as continuous for ordinary
variables.
change.cat.levels(object, classic = FALSE, ...) <- value
: change settings for the number of unique data
values required in a variable in order to define it as continuous for ordinary
variables.
change.dv.cat.levels()
: change settings for the number of unique data
values required in a variable in order to define it as continuous for the dependent variable.
change.dv.cat.levels(object, classic = FALSE, ...) <- value
: change settings for the number of unique data
values required in a variable in order to define it as continuous for the dependent variable.
change.miss()
: change the value to use as
'missing'.
change.subset()
: is used for setting the data item's subset field. To
specify a subset of the data to process, you use the variable names and the
regular R selection operators. To combine a subset over two or more
variables, the selection expressions for the two variables are combined
using R's unary logical operators.
The variable names are those that are specified in the NONMEM table files (e.g. PRED, TIME, SEX).
The selection operators are: == (equal) != (not equal) || (or) > (greater than) < (less than)
For example, to specify that TIME less than 24 should be processed, you type the expression: TIME < 24.
The unary logical operators are: & (and) | (or)
For example, to specify TIME less than 24 and males (SEX equal to 1), you type the expression: TIME < 24 & SEX == 1
This subset selection scheme works on all variables, including ID numbers.
The subset selection is not entirely stable. For example, there is no check that the user enters a valid expression, nor that the user specifies existing variable names. An erroneous expression will not become evident until a plot is attempted and the expression takes effect.
get.doc()
: get the documentation field in the Xpose data object.
set.doc()
: set the documentation field in the Xpose data object.
Andrew Hooker, Niclas Jonsson & Justin Wilkins
Data
, SData
, subset
,
xpose.data
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Change default subset xpdb5 <- change.subset(xpdb5) ## Set documentation field xpdb5 <- set.doc(xpdb5) ## View it view.doc(xpdb5) ## change the categorical limit for the dv variable change.dv.cat.levels(xpdb5) <- 10 ## change the categorical limit for non DV variables change.cat.levels(xpdb5) <- 2 ## or xpdb5 <- change.cat.levels(xpdb5,cat.levels=2) ## chnage variables from categorical to continuous xpdb5 <- change.cat.cont(xpdb5,to.cat.vec=c("AGE"),to.cont.vec=c("SEX")) xpdb5 <- change.cat.cont(xpdb5,change.type.vec=c("AGE","SEX")) change.cat.cont(xpdb5) <- c("AGE","SEX") ## End(Not run)
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Change default subset xpdb5 <- change.subset(xpdb5) ## Set documentation field xpdb5 <- set.doc(xpdb5) ## View it view.doc(xpdb5) ## change the categorical limit for the dv variable change.dv.cat.levels(xpdb5) <- 10 ## change the categorical limit for non DV variables change.cat.levels(xpdb5) <- 2 ## or xpdb5 <- change.cat.levels(xpdb5,cat.levels=2) ## chnage variables from categorical to continuous xpdb5 <- change.cat.cont(xpdb5,to.cat.vec=c("AGE"),to.cont.vec=c("SEX")) xpdb5 <- change.cat.cont(xpdb5,change.type.vec=c("AGE","SEX")) change.cat.cont(xpdb5) <- c("AGE","SEX") ## End(Not run)
Function to change the parameter scope.
change.parm(object, listall = TRUE, classic = FALSE)
change.parm(object, listall = TRUE, classic = FALSE)
object |
The xpose data object. |
listall |
whether we should list all the current parameters. |
classic |
true if used in the classic menu system (for internal use). |
If classic then return nothing. Otherwise return the new data object.
Andrew C. Hooker
This function allows the names of data items in the Xpose database to be changed.
change.var.name(object, classic = FALSE)
change.var.name(object, classic = FALSE)
object |
An |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
This function facilitates the changing of data item names in the object@Data slot.
An xpose.data
object.
Niclas Jonsson & Justin Wilkins
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) xpdb5 <- change.var.name(xpdb5) ## End(Not run)
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) xpdb5 <- change.var.name(xpdb5) ## End(Not run)
This function allows the labels of data items in the Xpose database to be changed.
change.xlabel(object, listall = TRUE, classic = FALSE)
change.xlabel(object, listall = TRUE, classic = FALSE)
object |
An |
listall |
A logical operator specifying whether the items in the database should be listed. |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
This function facilitates the changing of data item labels in the object@Prefs@Labels slot.
An xpose.data
object.
Justin Wilkins
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) xpdb5 <- change.xlabel(xpdb5) ## End(Not run)
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) xpdb5 <- change.xlabel(xpdb5) ## End(Not run)
These functions allow for the changing of Xpose variable definitions like "idv" and "dv". These variable definitions are used to refer to columns of the observed data in a generic way, so that generic plotting functions can be created.
change.xvardef( object, var = ".ask", def = ".ask", listall = TRUE, classic = FALSE, check.var = FALSE, ... ) change.xvardef( object, var, listall = FALSE, classic = FALSE, check.var = FALSE, ... ) <- value
change.xvardef( object, var = ".ask", def = ".ask", listall = TRUE, classic = FALSE, check.var = FALSE, ... ) change.xvardef( object, var, listall = FALSE, classic = FALSE, check.var = FALSE, ... ) <- value
object |
An |
var |
The Xpose variable you would like to change or add to the current
object. A one-element character vector (e.g. |
def |
A vector of column names from NONMEM table files
( |
listall |
Should the function list the database values? |
classic |
Is the function being used from the classic interface. This is an internal option. |
check.var |
Should the variables be checked against the current variables in the object? |
... |
Items passed to functions within this function. |
value |
a vector of values |
If called from the the command line then this function returns an xpose database. If called from the classic interface this function updates the current xpose database (.cur.db).
change.xvardef(
object,
var,
listall = FALSE,
classic = FALSE,
check.var = FALSE,
...
) <- value
: Change the covariate scope of
the xpose database object
The default xpose variables are:
Individual identifier column in dataset
values used for plotting ID values on data points in plots
The occasion variable
The dv variable
The pred variable
The ipred variable
The wres variable
The cwres variable
The res variable
The parameters in the database
The covariates in the database
The random parameters in the database
Andrew Hooker
## Here we load the example xpose database xpdb <- simpraz.xpdb # Change the "id" variable to point to "PRED" in the xpose object xpdb <- change.xvardef(xpdb,var="id",def="PRED") # Check the value of the "id" variable xvardef("id",xpdb) # Change the "idv" variable change.xvardef(xpdb,var="idv") <- "TIME" # Change the covariate scope change.xvardef(xpdb,var="covariates") <- c("SEX","AGE","WT") ## Not run: # Use the interactive capabilities of the function xpdb <- change.xvardef(xpdb) ## End(Not run)
## Here we load the example xpose database xpdb <- simpraz.xpdb # Change the "id" variable to point to "PRED" in the xpose object xpdb <- change.xvardef(xpdb,var="id",def="PRED") # Check the value of the "id" variable xvardef("id",xpdb) # Change the "idv" variable change.xvardef(xpdb,var="idv") <- "TIME" # Change the covariate scope change.xvardef(xpdb,var="covariates") <- c("SEX","AGE","WT") ## Not run: # Use the interactive capabilities of the function xpdb <- change.xvardef(xpdb) ## End(Not run)
This function computes the conditional weighted residuals (CWRES) from a NONMEM run. CWRES are an extension of the weighted residuals (WRES), but are calculated based on the first-order with conditional estimation (FOCE) method of linearizing a pharmacometric model (WRES are calculated based on the first-order (FO) method). The function requires a NONMEM table file and an extra output file that must be explicitly asked for when running NONMEM, see details below.
compute.cwres( run.number, tab.prefix = "cwtab", sim.suffix = "", est.tab.suffix = ".est", deriv.tab.suffix = ".deriv", old.file.convention = FALSE, id = "ALL", printToOutfile = TRUE, onlyNonZero = TRUE, ... ) xpose.calculate.cwres( object, cwres.table.prefix = "cwtab", tab.suffix = "", sim.suffix = "sim", est.tab.suffix = ".est", deriv.tab.suffix = ".deriv", old.file.convention = FALSE, id = "ALL", printToOutfile = TRUE, onlyNonZero = FALSE, classic = FALSE, ... )
compute.cwres( run.number, tab.prefix = "cwtab", sim.suffix = "", est.tab.suffix = ".est", deriv.tab.suffix = ".deriv", old.file.convention = FALSE, id = "ALL", printToOutfile = TRUE, onlyNonZero = TRUE, ... ) xpose.calculate.cwres( object, cwres.table.prefix = "cwtab", tab.suffix = "", sim.suffix = "sim", est.tab.suffix = ".est", deriv.tab.suffix = ".deriv", old.file.convention = FALSE, id = "ALL", printToOutfile = TRUE, onlyNonZero = FALSE, classic = FALSE, ... )
run.number |
The run number of the NONMEM from which the CWRES are to be calculated. |
tab.prefix |
The prefix to two NONMEM file containing the needed values for the computation of the CWRES, described in the details section. |
sim.suffix |
The suffix ,before the ".", of the NONMEM file containing
the needed values for the computation of the CWRES, described in the details
section. For example, the table files might be named |
est.tab.suffix |
The suffix, after the ".", of the NONMEM file containing the estimated parameter values needed for the CWRES calculation. |
deriv.tab.suffix |
The suffix, after the ".", of the NONMEM file containing the derivatives of the model with respect to the random parameters needed for the CWRES calculation. |
old.file.convention |
For backwards compatibility. Use this if you are using the previous file convention for CWRES (table files named cwtab1, cwtab1.50, cwtab1.51, ... , cwtab.58 for example). |
id |
Can be either "ALL" or a number matching an ID label in the
|
printToOutfile |
Logical (TRUE/FALSE) indicating whether the CWRES
values calculated should be appended to a copy of the |
onlyNonZero |
Logical (TRUE/FALSE) indicating if the return value (the
CWRES values) of |
... |
Other arguments passed to basic functions in code. |
object |
An xpose.data object. |
cwres.table.prefix |
The prefix to the NONMEM table file containing the derivative of the model with respect to the etas and epsilons, described in the details section. |
tab.suffix |
The suffix to the NONMEM table file containing the derivative of the model with respect to the etas and epsilons, described in the details section. |
classic |
Indicates if the function is to be used in the classic menu system. |
The function reads in the following two files:
paste(tab.prefix,run.number,sim.suffix,est.tab.suffix,sep="")
paste(tab.prefix,run.number,sim.suffix,deriv.tab.suffix,sep="")
Which might be for example:
cwtab1.est cwtab1.deriv
and (depending on the input values to the function) returns the CWRES in vector form as well as creating a new table file named:
paste(tab.prefix,run.number,sim.suffix,sep="")
Which might be for example:
cwtab1
Returns a vector containing the values of the CWRES.
Returns an Xpose data object that contains the CWRES. If simulated data is present, then the CWRES will also be calculated for that data.
xpose.calculate.cwres()
: This function is a wrapper around
the function compute.cwres
. It computes the CWRES for the model file
associated with the Xpose data object input to the function. If possible it
also computes the CWRES for any simulated data associated with the current
Xpose data object. If you have problems with this function try using
compute.cwres
and then rereading your dataset into Xpose.
In order for this function to calculate the CWRES, NONMEM must be run while requesting certain tables and files to be created. How these files are created differs depending on if you are using $PRED or ADVAN as well as the version of NONMEM you are using. These procedures are known to work for NONMEM VI but may be different for NONMEM V and NONMEM VII. We have attempted to indicate where NONMEM V may be different, but this has not been extensively tested! For NONMEM VII the CWRES are calculated internally so this function is rarely needed.
This procedure can be done automatically using Perl Speaks NONMEM (PsN) and
we highly recommend using PsN for this purpose. After installing PsN just
type 'execute [modelname] -cwres
'. See
https://uupharmacometrics.github.io/PsN/ for more details.
There are five main insertions needed in your NONMEM control file:
$ABB COMRES=X.
Insert this line directly after your $DATA line. The value of X is the number of ETA() terms plus the number of EPS() terms in your model. For example for a model with three ETA() terms and two EPS() terms the code would look like this:
$DATA temp.csv IGNORE=@ $ABB COMRES=5 $INPUT ID TIME DV MDV AMT EVID $SUB ADVAN2 TRANS2
Verbatim code.
Using ADVAN.
If you are using ADVAN routines in your model, then Verbatim code should be inserted directly after the $ERROR section of your model file. The length of the code depends again on the number of ETA() terms and EPS() terms in your model. For each ETA(y) in your model there is a corresponding term G(y,1) that you must assign to a COM() variable. For each EPS(y) in your model, there is a corresponding HH(y,1) term that you must assign to a COM() variable.
For example for a model using ADVAN routines with three ETA() terms and two EPS() terms the code would look like this:
"LAST " COM(1)=G(1,1) " COM(2)=G(2,1) " COM(3)=G(3,1) " COM(4)=HH(1,1) " COM(5)=HH(2,1)
Using PRED.
If you are using $PRED, the verbatim code should be inserted directly after the $PRED section of your model file. For each ETA(y) in your model there is a corresponding term G(y,1) that you must assign to a COM() variable. For each EPS(y) in your model, there is a corresponding H(y,1) term that you must assign to a COM() variable. The code would look like this for three ETA() terms and two EPS() terms:
"LAST " COM(1)=G(1,1) " COM(2)=G(2,1) " COM(3)=G(3,1) " COM(4)=H(1,1) " COM(5)=H(2,1)
INFN routine.
Using ADVAN with NONMEM VI and higher.
If you are using ADVAN routines in your model, then an $INFN section should be placed directly after the $PK section using the following code. In this example we are assuming that the model file is named something like 'run1.mod', thus the prefix to these file names 'cwtab' has the same run number attached to it (i.e. 'cwtab1'). This should be changed for each new run number.
$INFN IF (ICALL.EQ.3) THEN OPEN(50,FILE='cwtab1.est') WRITE(50,*) 'ETAS' DO WHILE(DATA) IF (NEWIND.LE.1) WRITE (50,*) ETA ENDDO WRITE(50,*) 'THETAS' WRITE(50,*) THETA WRITE(50,*) 'OMEGAS' WRITE(50,*) OMEGA(BLOCK) WRITE(50,*) 'SIGMAS' WRITE(50,*) SIGMA(BLOCK) ENDIF
Using ADVAN with NONMEM V.
If you are using ADVAN routines in your model, then you need to use an INFN subroutine. If we call the INFN subroutine 'myinfn.for' then the $SUBS line of your model file should include the INFN option. That is, if we are using ADVAN2 and TRANS2 in our model file then the $SUBS line would look like:
$SUB ADVAN2 TRANS2 INFN=myinfn.for
The 'myinfn.for' routine for 4 thetas, 3 etas and 1 epsilon is shown below. If your model has different numbers of thetas, etas and epsilons then the values of NTH, NETA, and NEPS, should be changed respectively. These vales are found in the DATA statement of the subroutine. additionally, in this example we are assuming that the model file is named something like 'run1.mod', thus the prefix to the output file names ('cwtab') in this subroutine has the same run number attached to it (i.e. 'cwtab1'). This number should be changed for each new run number (see the line beginning with 'OPEN').
SUBROUTINE INFN(ICALL,THETA,DATREC,INDXS,NEWIND) DIMENSION THETA(*),DATREC(*),INDXS(*) DOUBLE PRECISION THETA COMMON /ROCM6/ THETAF(40),OMEGAF(30,30),SIGMAF(30,30) COMMON /ROCM7/ SETH(40),SEOM(30,30),SESIG(30,30) COMMON /ROCM8/ OBJECT COMMON /ROCM9/ IERE,IERC DOUBLE PRECISION THETAF, OMEGAF, SIGMAF DOUBLE PRECISION OBJECT REAL SETH,SEOM,SESIG DOUBLE PRECISION ETA(10) INTEGER J,I INTEGER IERE,IERC INTEGER MODE INTEGER NTH,NETA,NEPS DATA NTH,NETA,NEPS/4,3,1/ IF (ICALL.EQ.0) THEN C open files here, if necessary OPEN(50,FILE='cwtab1.est') ENDIF IF (ICALL.EQ.3) THEN MODE=0 CALL PASS(MODE) MODE=1 WRITE(50,*) 'ETAS' 20 CALL PASS(MODE) IF (MODE.EQ.0) GO TO 30 IF (NEWIND.NE.2) THEN CALL GETETA(ETA) WRITE (50,97) (ETA(I),I=1,NETA) ENDIF GO TO 20 30 CONTINUE WRITE (50,*) 'THETAS' WRITE (50,99) (THETAF(J),J=1,NTH) WRITE(50,*) 'OMEGAS' DO 7000 I=1,NETA 7000 WRITE (50,99) (OMEGAF(I,J),J=1,NETA) WRITE(50,*) 'SIGMAS' DO 7999 I=1,NEPS 7999 WRITE (50,99) (SIGMAF(I,J),J=1,NEPS) ENDIF 99 FORMAT (20E15.7) 98 FORMAT (2I8) 97 FORMAT (10E15.7) RETURN END
Using $PRED with NONMEM VI and higher.
If you are using $PRED, then an the following code should be placed at the end of the $PRED section of the model file (together with the verbatim code). In this example we are assuming that the model file is named something like 'run1.mod', thus the prefix to these file names 'cwtab' has the same run number attached to it (i.e. 'cwtab1'). This should be changed for each new run number.
IF (ICALL.EQ.3) THEN OPEN(50,FILE='cwtab1.est') WRITE(50,*) 'ETAS' DO WHILE(DATA) IF (NEWIND.LE.1) WRITE (50,*) ETA ENDDO WRITE(50,*) 'THETAS' WRITE(50,*) THETA WRITE(50,*) 'OMEGAS' WRITE(50,*) OMEGA(BLOCK) WRITE(50,*) 'SIGMAS' WRITE(50,*) SIGMA(BLOCK) ENDIF
Using $PRED with NONMEM V.
If you are using $PRED with NONMEM V, then you need to add verbatim code immediately after the $PRED command. In this example we assume 4 thetas, 3 etas and 1 epsilon. If your model has different numbers of thetas, etas and epsilons then the values of NTH, NETA, and NEPS, should be changed respectively. These vales are found in the DATA statement below.
$PRED "FIRST " COMMON /ROCM6/ THETAF(40),OMEGAF(30,30),SIGMAF(30,30) " COMMON /ROCM7/ SETH(40),SEOM(30,30),SESIG(30,30) " COMMON /ROCM8/ OBJECT " DOUBLE PRECISION THETAF, OMEGAF, SIGMAF " DOUBLE PRECISION OBJECT " REAL SETH,SEOM,SESIG " INTEGER J,I " INTEGER MODE " INTEGER NTH,NETA,NEPS " DATA NTH,NETA,NEPS/4,3,1/
After this verbatim code you add all of the abbreviated code needed for the $PRED routine in your model file. After the abbreviated code more verbatim code is needed. This verbatim code should be added before the verbatim code discussed above under point 2. In the example below we are assuming that the model file is named something like 'run1.mod', thus the prefix to the output file names ('cwtab') has the same run number attached to it (i.e. 'cwtab1'). This number should be changed for each new run number (see the line beginning with 'OPEN').
" IF (ICALL.EQ.0) THEN "C open files here, if necessary " OPEN(50,FILE='cwtab1.est') " ENDIF " IF (ICALL.EQ.3) THEN " MODE=0 " CALL PASS(MODE) " MODE=1 " WRITE(50,*) 'ETAS' "20 CALL PASS(MODE) " IF (MODE.EQ.0) GO TO 30 " IF (NEWIND.NE.2) THEN " CALL GETETA(ETA) " WRITE (50,97) (ETA(I),I=1,NETA) " ENDIF " GO TO 20 "30 CONTINUE " WRITE (50,*) 'THETAS' " WRITE (50,99) (THETAF(J),J=1,NTH) " WRITE (50,*) 'OMEGAS' " DO 7000 I=1,NETA "7000 WRITE (50,99) (OMEGAF(I,J),J=1,NETA) " WRITE (50,*) 'SIGMAS' " DO 7999 I=1,NEPS "7999 WRITE (50,99) (SIGMAF(I,J),J=1,NEPS) " ENDIF "99 FORMAT (20E15.7) "98 FORMAT (2I8) "97 FORMAT (10E15.7)
cwtab*.deriv table file.
A special table file needs to be created to print out the values contained
in the COMRES
variables. In addition the ID, IPRED, MDV, DV,
PRED and RES
data items are needed for the computation of the CWRES. The
following code should be added to the NONMEM model file. In this example we
continue to assume that we are using a model with three ETA() terms and two
EPS() terms, extra terms should be added for new ETA() and EPS() terms in
the model file. We also assume the model file is named something like
'run1.mod', thus the prefix to these file names 'cwtab' has the same run
number attached to it (i.e. 'cwtab1'). This should be changed for each new
run number.
$TABLE ID COM(1)=G11 COM(2)=G21 COM(3)=G31 COM(4)=H11 COM(5)=H21 IPRED MDV NOPRINT ONEHEADER FILE=cwtab1.deriv
$ESTIMATION.
To compute the CWRES, the NONMEM model file must use (at least) the FO
method with the POSTHOC
step. If the FO method is used and the
POSTHOC
step is not included then the CWRES values will be equivalent
to the WRES. The CWRES calculations are based on the FOCE approximation,
and consequently give an idea of the ability of the FOCE method to fit the
model to the data. If you are using another method of parameter estimation
(e.g. FOCE with interaction), the CWRES will not be calculated based on the
same model linearization procedure.
Andrew Hooker
Hooker AC, Staatz CE, Karlsson MO. Conditional weighted residuals, an improved model diagnostic for the FO/FOCE methods. PAGE 15 (2006) Abstr 1001 [http://www.page-meeting.org/?abstract=1001].
Hooker AC, Staatz CE and Karlsson MO, Conditional weighted residuals (CWRES): a model diagnostic for the FOCE method, Pharm Res, 24(12): p. 2187-97, 2007, [doi:10.1007/s11095-007-9361-x].
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
## Not run: ## Capture CWRES from cwtab5.est and cwtab5.deriv cwres <- compute.cwres(5) mean(cwres) var(cwres) ## Capture CWRES from cwtab1.est and cwtab1.deriv, do not print out, allow zeroes cwres <- compute.cwres("1", printToOutFile = FALSE, onlyNonZero = FALSE) ## Capture CWRES for ID==1 cwres.1 <- compute.cwres("1", id=1) ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Compare WRES, CWRES xpdb5 <- xpose.calculate.cwres(xpdb5) cwres.wres.vs.idv(xpdb5) ## End(Not run)
## Not run: ## Capture CWRES from cwtab5.est and cwtab5.deriv cwres <- compute.cwres(5) mean(cwres) var(cwres) ## Capture CWRES from cwtab1.est and cwtab1.deriv, do not print out, allow zeroes cwres <- compute.cwres("1", printToOutFile = FALSE, onlyNonZero = FALSE) ## Capture CWRES for ID==1 cwres.1 <- compute.cwres("1", id=1) ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Compare WRES, CWRES xpdb5 <- xpose.calculate.cwres(xpdb5) cwres.wres.vs.idv(xpdb5) ## End(Not run)
These functions plot scatterplot matrices of parameters, random parameters and covariates.
cov.splom( object, main = xpose.multiple.plot.title(object = object, plot.text = "Scatterplot matrix of covariates", ...), varnames = NULL, onlyfirst = TRUE, smooth = TRUE, lmline = NULL, ... ) parm.splom( object, main = xpose.multiple.plot.title(object = object, plot.text = "Scatterplot matrix of parameters", ...), varnames = NULL, onlyfirst = TRUE, smooth = TRUE, lmline = NULL, ... ) ranpar.splom( object, main = xpose.multiple.plot.title(object = object, plot.text = "Scatterplot matrix of random parameters", ...), varnames = NULL, onlyfirst = TRUE, smooth = TRUE, lmline = NULL, ... )
cov.splom( object, main = xpose.multiple.plot.title(object = object, plot.text = "Scatterplot matrix of covariates", ...), varnames = NULL, onlyfirst = TRUE, smooth = TRUE, lmline = NULL, ... ) parm.splom( object, main = xpose.multiple.plot.title(object = object, plot.text = "Scatterplot matrix of parameters", ...), varnames = NULL, onlyfirst = TRUE, smooth = TRUE, lmline = NULL, ... ) ranpar.splom( object, main = xpose.multiple.plot.title(object = object, plot.text = "Scatterplot matrix of random parameters", ...), varnames = NULL, onlyfirst = TRUE, smooth = TRUE, lmline = NULL, ... )
object |
An xpose.data object. |
main |
A string giving the plot title or |
varnames |
A vector of strings containing labels for the variables in the scatterplot matrix. |
onlyfirst |
Logical value indicating if only the first row per individual is included in the plot. |
smooth |
A |
lmline |
logical variable specifying whether a linear regression line
should be superimposed over an |
... |
Other arguments passed to |
The parameters or covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$parms
, object@Prefs@Xvardef$ranpar
or
object@Prefs@Xvardef$covariates
, are plotted together as scatterplot
matrices.
A wide array of extra options controlling scatterplot matrices are
available. See xpose.plot.splom
for details.
To control the appearance of the labels and names in the scatterplot matrix
plots you can try varname.cex=0.5
and axis.text.cex=0.5
(this
changes the tick labels and the variable names to be half as large as
normal).
Delivers a scatterplot matrix.
cov.splom()
: A scatterplot matrix of covariates
parm.splom()
: A scatterplot matrix of parameters
ranpar.splom()
: A scatterplot matrix of random parameters
Andrew Hooker & Justin Wilkins
xpose.plot.splom
, xpose.panel.splom
,
splom
, xpose.data-class
,
xpose.prefs-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb ## A scatterplot matrix of parameters, grouped by sex parm.splom(xpdb, groups="SEX") ## A scatterplot matrix of ETAs, grouped by sex ranpar.splom(xpdb, groups="SEX") ## Covariate scatterplots, with text customization cov.splom(xpdb, varname.cex=0.4, axis.text.cex=0.4, smooth=NULL, cex=0.4)
## Here we load the example xpose database xpdb <- simpraz.xpdb ## A scatterplot matrix of parameters, grouped by sex parm.splom(xpdb, groups="SEX") ## A scatterplot matrix of ETAs, grouped by sex ranpar.splom(xpdb, groups="SEX") ## Covariate scatterplots, with text customization cov.splom(xpdb, varname.cex=0.4, axis.text.cex=0.4, smooth=NULL, cex=0.4)
Creates a class for viewing and plotting xpose plots with multiple plots on the same page or multiple pages.
create.xpose.plot.classes()
create.xpose.plot.classes()
Niclas Jonsson and Andrew C. Hooker
This function defines and sets the Xpose data classes.
createXposeClasses(nm7 = F)
createXposeClasses(nm7 = F)
nm7 |
|
All the default settings are defined in this function.
Niclas Jonsson and Andrew C. Hooker
xpose.data-class
,xpose.prefs-class
This is a histogram of the distribution of conditional weighted residuals
(CWRES) in the dataset, a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.histogram
function.
cwres.dist.hist(object, ...)
cwres.dist.hist(object, ...)
object |
An xpose.data object. |
... |
Other arguments passed to |
Displays a histogram of the conditional weighted residuals (CWRES).
Returns a histogram of conditional weighted residuals (CWRES).
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.histogram
,
xpose.panel.histogram
, histogram
,
xpose.prefs-class
, compute.cwres
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb ## A vanilla plot cwres.dist.hist(xpdb)
## Here we load the example xpose database xpdb <- simpraz.xpdb ## A vanilla plot cwres.dist.hist(xpdb)
This is a QQ plot of the distribution of conditional weighted residuals
(CWRES) in the dataset, a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.qq
function.
cwres.dist.qq(object, ...)
cwres.dist.qq(object, ...)
object |
An xpose.data object. |
... |
Other arguments passed to |
Displays a QQ plot of the conditional weighted residuals (CWRES).
Returns a QQ plot of conditional weighted residuals (CWRES).
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.qq
, xpose.panel.qq
,
qqmath
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
cwres.dist.qq(simpraz.xpdb)
cwres.dist.qq(simpraz.xpdb)
This creates a stack of plots of conditional weighted residuals (CWRES)
plotted against covariates, and is a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.default
and
xpose.plot.histogram
functions. Most of the options take their
default values from xpose.data object but may be overridden by supplying
them as arguments.
cwres.vs.cov( object, ylb = "CWRES", smooth = TRUE, type = "p", main = "Default", ... )
cwres.vs.cov( object, ylb = "CWRES", smooth = TRUE, type = "p", main = "Default", ... )
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
smooth |
A |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots and histograms are
available. See xpose.plot.default
and
xpose.plot.histogram
for details.
Returns a stack of xyplots and histograms of CWRES versus covariates.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.plot.histogram
, xyplot
,
histogram
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb cwres.vs.cov(xpdb)
## Here we load the example xpose database xpdb <- simpraz.xpdb cwres.vs.cov(xpdb)
This is a plot of population conditional weighted residuals (CWRES) vs the
independent variable (IDV), a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
cwres.vs.idv(object, abline = c(0, 0), smooth = TRUE, ...)
cwres.vs.idv(object, abline = c(0, 0), smooth = TRUE, ...)
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
A |
... |
Other arguments passed to |
Conditional weighted residuals (CWRES) are plotted against the independent
variable, as specified in object@Prefs@Xvardef$idv
.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns an xyplot of CWRES vs IDV.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, compute.cwres
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb ## A vanilla plot cwres.vs.idv(xpdb) ## A conditioning plot cwres.vs.idv(xpdb, by="HCTZ")
## Here we load the example xpose database xpdb <- simpraz.xpdb ## A vanilla plot cwres.vs.idv(xpdb) ## A conditioning plot cwres.vs.idv(xpdb, by="HCTZ")
This creates a box and whisker plot of conditional weighted residuals
(CWRES) vs the independent variable (IDV), and is a specific function in
Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.bw
function. Most of the options take their default values
from xpose.data object but may be overridden by supplying them as arguments.
cwres.vs.idv.bw(object, ...)
cwres.vs.idv.bw(object, ...)
object |
An xpose.data object. |
... |
Other arguments passed to |
This creates a box and whisker plot of conditional weighted residuals
(CWRES) vs the independent variable (IDV), and is a specific function in
Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.bw
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling bwplots are available. See
xpose.plot.bw
and xpose.panel.bw
for details.
Returns a stack of box-and-whisker plots of CWRES vs IDV.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.bw
, xpose.panel.bw
,
bwplot
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb cwres.vs.idv.bw(xpdb)
## Here we load the example xpose database xpdb <- simpraz.xpdb cwres.vs.idv.bw(xpdb)
This is a plot of population conditional weighted residuals (cwres) vs
population predictions (PRED), a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.default
function.
Most of the options take their default values from xpose.data object but may
be overridden by supplying them as arguments.
cwres.vs.pred(object, abline = c(0, 0), smooth = TRUE, ...)
cwres.vs.pred(object, abline = c(0, 0), smooth = TRUE, ...)
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns an xyplot of CWRES vs PRED.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
, xyplot
,
xpose.prefs-class
, compute.cwres
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb cwres.vs.pred(xpdb) ## A conditioning plot cwres.vs.pred(xpdb, by="HCTZ")
## Here we load the example xpose database xpdb <- simpraz.xpdb cwres.vs.pred(xpdb) ## A conditioning plot cwres.vs.pred(xpdb, by="HCTZ")
This creates a box and whisker plot of conditional weighted residuals
(CWRES) vs population predictions (PRED), and is a specific function in
Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.bw
function. Most of the options take their default values
from xpose.data object but may be overridden by supplying them as arguments.
cwres.vs.pred.bw(object, ...)
cwres.vs.pred.bw(object, ...)
object |
An xpose.data object. |
... |
Other arguments passed to |
This creates a box and whisker plot of conditional weighted residuals
(CWRES) vs population predictions (PRED), and is a specific function in
Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.bw
function. Most of the options take their default values
from xpose.data object but may be overridden by supplying them as arguments.
Conditional weighted residuals (CWRES) require some extra steps to
calculate. See compute.cwres
for details.
A wide array of extra options controlling bwplots are available. See
xpose.plot.bw
and xpose.panel.bw
for details.
Returns a box-and-whisker plot of CWRES vs PRED.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.bw
, xpose.panel.bw
,
bwplot
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb cwres.vs.pred.bw(xpdb)
## Here we load the example xpose database xpdb <- simpraz.xpdb cwres.vs.pred.bw(xpdb)
A graphical comparison between the WRES and CWRES as plotted against the
independent variable. Conditional weighted residuals (CWRES) require
some extra steps to calculate. Either add CWRES
to your NONMEM
table files or compute them using the information proveded in
compute.cwres
. A wide array of extra options controlling
xyplots are available. See xpose.plot.default
and
xpose.panel.default
for details.
cwres.wres.vs.idv( object, ylb = "Residuals", abline = c(0, 0), smooth = TRUE, scales = list(), ... )
cwres.wres.vs.idv( object, ylb = "Residuals", abline = c(0, 0), smooth = TRUE, scales = list(), ... )
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
abline |
Vector of arguments to the |
smooth |
A |
scales |
scales is passed to |
... |
Other arguments passed to |
A compound xyplot.
Niclas Jonsson & Andrew Hooker
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
,
compute.cwres
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
cwres.wres.vs.idv(simpraz.xpdb)
cwres.wres.vs.idv(simpraz.xpdb)
Graphically compares WRES and CWRES as plotted against the
population predictions.Conditional weighted residuals (CWRES) require
some extra steps to calculate. Either add CWRES
to your NONMEM
table files or compute them using the information proveded in
compute.cwres
. A wide array of extra options controlling
xyplots are available. See xpose.plot.default
and
xpose.panel.default
for details.
cwres.wres.vs.pred( object, ylb = "Residuals", abline = c(0, 0), smooth = TRUE, scales = list(), ... )
cwres.wres.vs.pred( object, ylb = "Residuals", abline = c(0, 0), smooth = TRUE, scales = list(), ... )
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
abline |
Vector of arguments to the |
smooth |
A |
scales |
scales is passed to |
... |
Other arguments passed to |
A compound xyplot.
Niclas Jonsson & Andrew Hooker
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
,
compute.cwres
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
cwres.wres.vs.pred(simpraz.xpdb)
cwres.wres.vs.pred(simpraz.xpdb)
Extracts or assigns the data from the Data or SData slots in an "xpose.data" object.
Data(object, inclZeroWRES = FALSE, onlyfirst = FALSE, subset = NULL) Data(object, quiet = TRUE, keep.structure = F) <- value SData( object, inclZeroWRES = FALSE, onlyfirst = FALSE, subset = NULL, samp = NULL ) SData(object) <- value
Data(object, inclZeroWRES = FALSE, onlyfirst = FALSE, subset = NULL) Data(object, quiet = TRUE, keep.structure = F) <- value SData( object, inclZeroWRES = FALSE, onlyfirst = FALSE, subset = NULL, samp = NULL ) SData(object) <- value
object |
An "xpose.data" object |
inclZeroWRES |
Logical value indicating whether rows with WRES==0 should be included in the extracted data. |
onlyfirst |
Logical value indicating whether only the first line per individual should be included in the extracted data. |
subset |
Expression with which the extracted data should be subset (see
|
quiet |
|
keep.structure |
|
value |
An R data.frame. |
samp |
An integer between 1 and object@Nsim
(see |
When using Data to assign a data.frame to the Data slot in the "xpose.data" object a number of things happen:
Each column in the data.frame is checked and set to factor if the number of
unique values are less than the value of Cat.levels (see
xpose.prefs-class
).
It is checked which of the predefined xpose data variables that exists in the data.frame. The variable definitions that does not exist are set to NULL.
The column identified by the dv
xpose variable definition, is checked
and set to factor if the number of unique values are less than or equal to
the DV.Cat.levels (see xpose.prefs-class
).
Finally, each column name in the data.frame is checked for a label (see
xpose.prefs-class
). If it is non-existent, the label is set to
the column name.
When SData is used to assign a data.frame to the SData slot it is first
checked that the number of rows in the SData data.frame is an even multiple
of the number of rown in Data. Next, each column in the SData data.frame is
assigned the same class as the corresponding column in the Data data.frame
(it is required that the columns are the same in Data and SData). Finally,
an extra column, "iter", is added to SData, which indicates the iteration
number that each row belongs to. At the same time, the Nsim slot of the
"xpose.data" object is set to the number of iterations (see
nsim
).
Returns a data.frame from the Data or SData slots, excluding rows as indicated by the arguments.
Data()
: Extract data
Data(object, quiet = TRUE, keep.structure = F) <- value
: assign data
SData()
: extract simulated data
SData(object) <- value
: assign simulated data
Niclas Jonsson
xpose.data-class
,xpose.prefs-class
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
xpdb <- simpraz.xpdb ## Extract data my.dataframe <- Data(xpdb) ## Assign data Data(xpdb) <- my.dataframe ## Extract simulated data my.simulated.dataframe <- SData(xpdb) ## Assign simulated data SData(xpdb) <- my.simulated.dataframe
xpdb <- simpraz.xpdb ## Extract data my.dataframe <- Data(xpdb) ## Assign data Data(xpdb) <- my.dataframe ## Extract simulated data my.simulated.dataframe <- SData(xpdb) ## Assign simulated data SData(xpdb) <- my.simulated.dataframe
This function graphically "checks out" the dataset to identify errors or inconsistencies.
data.checkout( obj = NULL, datafile = ".ask.", hlin = -99, dotcol = "black", dotpch = 16, dotcex = 1, idlab = "ID", csv = NULL, main = "Default", ... )
data.checkout( obj = NULL, datafile = ".ask.", hlin = -99, dotcol = "black", dotpch = 16, dotcex = 1, idlab = "ID", csv = NULL, main = "Default", ... )
obj |
NULL or an xpose.data object. |
datafile |
A data file, suitable for import by
|
hlin |
An integer, specifying the line number on which the column headers appear. |
dotcol |
Colour for the dots in the dotplot. If obj is an xpose data object then the default is to use the same value as defined for box-and-whisker plots. |
dotpch |
Plotting character for the dots in the dotplot. If obj is an xpose data object then the default is to use the same value as defined for box-and-whisker plots. |
dotcex |
Relative scaling for the dots in the dotplot. If obj is an xpose data object then the default is to use the same value as defined for box-and-whisker plots. |
idlab |
The ID column label in the dataset. Input as a text string. |
csv |
Is the data file in CSV format (comma separated values)? If the
value is |
main |
The title to the plot. "default" means that Xpose creates a title. |
... |
Other arguments passed to |
This function creates a series of dotplots
, one for each variable in
the dataset, against individual ID. Outliers and clusters may easily be
detected in this manner.
A stack of dotplots.
Niclas Jonsson, Andrew Hooker & Justin Wilkins
dotplot
, xpose.prefs-class
,
read.table
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## We expect to find the required NONMEM run, table and data files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) data.checkout(xpdb5, datafile = "mydata.dta") data.checkout(datafile = "mydata.dta") ## End(Not run)
## Not run: ## We expect to find the required NONMEM run, table and data files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) data.checkout(xpdb5, datafile = "mydata.dta") data.checkout(datafile = "mydata.dta") ## End(Not run)
These functions print a summary of the specified Xpose object to the R console.
db.names(object)
db.names(object)
object |
An |
These functions return a detailed summary of the contents of a specified
xpose.data
object.
A detailed summary of the contents of a specified
xpose.data
object.
Niclas Jonsson & Justin Wilkins
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
db.names(simpraz.xpdb)
db.names(simpraz.xpdb)
Change in individual objective function value vs. covariate value.
dOFV.vs.cov( xpdb1, xpdb2, covariates = xvardef("covariates", xpdb1), ylb = expression(paste(Delta, OFV[i])), main = "Default", smooth = TRUE, abline = c(0, 0), ablcol = "grey", abllwd = 2, abllty = "dashed", max.plots.per.page = 1, ... )
dOFV.vs.cov( xpdb1, xpdb2, covariates = xvardef("covariates", xpdb1), ylb = expression(paste(Delta, OFV[i])), main = "Default", smooth = TRUE, abline = c(0, 0), ablcol = "grey", abllwd = 2, abllty = "dashed", max.plots.per.page = 1, ... )
xpdb1 |
Xpose data object for first NONMEM run |
xpdb2 |
Xpose data object for second NONMEM run |
covariates |
Covariates to plot against |
ylb |
Label for Y axis. |
main |
Title of plot. |
smooth |
Should we have a smooth? |
abline |
abline description. |
ablcol |
color of abline |
abllwd |
line width of abline |
abllty |
type of abline |
max.plots.per.page |
Plots per page. |
... |
additional arguments to function |
Andrew C. Hooker
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## read in table files xpdb8 <- xpose.data(8) xpdb11 <- xpose.data(11) ## Make some plots dOFV.vs.cov(xpdb8,xpdb11,"AGE") dOFV.vs.cov(xpdb8,xpdb11,c("AGE","SECR")) ## End(Not run)
## Not run: ## read in table files xpdb8 <- xpose.data(8) xpdb11 <- xpose.data(11) ## Make some plots dOFV.vs.cov(xpdb8,xpdb11,"AGE") dOFV.vs.cov(xpdb8,xpdb11,c("AGE","SECR")) ## End(Not run)
A plot showing the most and least influential individuals in determining a drop in OFV between two models.
dOFV.vs.id( xpdb1, xpdb2, sig.drop = -3.84, decrease.label.number = 3, increase.label.number = 3, id.lab.cex = 0.6, id.lab.pos = 2, type = "o", xlb = "Number of subjects removed", ylb = expression(paste(Delta, "OFV")), main = "Default", sig.line.col = "red", sig.line.lty = "dotted", tot.line.col = "grey", tot.line.lty = "dashed", key = list(columns = 1, lines = list(pch = c(super.sym$pch[1:2], NA, NA), type = list("o", "o", "l", "l"), col = c(super.sym$col[1:2], sig.line.col, tot.line.col), lty = c(super.sym$lty[1:2], sig.line.lty, tot.line.lty)), text = list(c(expression(paste(Delta, OFV[i] < 0)), expression(paste(Delta, OFV[i] > 0)), expression(paste("Significant ", Delta, OFV)), expression(paste("Total ", Delta, OFV)))), corner = c(0.95, 0.5), border = T), ... )
dOFV.vs.id( xpdb1, xpdb2, sig.drop = -3.84, decrease.label.number = 3, increase.label.number = 3, id.lab.cex = 0.6, id.lab.pos = 2, type = "o", xlb = "Number of subjects removed", ylb = expression(paste(Delta, "OFV")), main = "Default", sig.line.col = "red", sig.line.lty = "dotted", tot.line.col = "grey", tot.line.lty = "dashed", key = list(columns = 1, lines = list(pch = c(super.sym$pch[1:2], NA, NA), type = list("o", "o", "l", "l"), col = c(super.sym$col[1:2], sig.line.col, tot.line.col), lty = c(super.sym$lty[1:2], sig.line.lty, tot.line.lty)), text = list(c(expression(paste(Delta, OFV[i] < 0)), expression(paste(Delta, OFV[i] > 0)), expression(paste("Significant ", Delta, OFV)), expression(paste("Total ", Delta, OFV)))), corner = c(0.95, 0.5), border = T), ... )
xpdb1 |
Xpose data object for first NONMEM run ("new" run) |
xpdb2 |
Xpose data object for Second NONMEM run ("reference" run) |
sig.drop |
What is a significant drop of OFV? |
decrease.label.number |
How many points should bw labeled with ID values for those IDs with a drop in iOFV? |
increase.label.number |
How many points should bw labeled with ID values for those IDs with an increase in iOFV? |
id.lab.cex |
Size of ID labels. |
id.lab.pos |
ID label position. |
type |
Type of lines. |
xlb |
X-axis label. |
ylb |
Y-axis label. |
main |
Title of plot. |
sig.line.col |
Significant OFV drop line color. |
sig.line.lty |
Significant OFV drop line type. |
tot.line.col |
Total OFV drop line color. |
tot.line.lty |
Total OFV drop line type. |
key |
Legend for plot. |
... |
Additional arguments to function. |
Andrew C. Hooker
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: library(xpose4) ## first make sure that the iofv values are read into xpose cur.dir <- getwd() setwd(paste(cur.dir,"/LAG_TIME",sep="")) xpdb1 <- xpose.data(1) setwd(paste(cur.dir,"/TRANSIT_MODEL",sep="")) xpdb2 <- xpose.data(1) setwd(cur.dir) ## then make the plot dOFV.vs.id(xpdb1,xpdb2) ## End(Not run)
## Not run: library(xpose4) ## first make sure that the iofv values are read into xpose cur.dir <- getwd() setwd(paste(cur.dir,"/LAG_TIME",sep="")) xpdb1 <- xpose.data(1) setwd(paste(cur.dir,"/TRANSIT_MODEL",sep="")) xpdb2 <- xpose.data(1) setwd(cur.dir) ## then make the plot dOFV.vs.id(xpdb1,xpdb2) ## End(Not run)
Change in individual objective function value 1 vs. individual objective
dOFV1.vs.dOFV2( xpdb1, xpdb2, xpdb3, ylb = expression(paste(Delta, OFV1[i])), xlb = expression(paste(Delta, OFV2[i])), main = "Default", smooth = NULL, abline = c(0, 1), ablcol = "grey", abllwd = 2, abllty = "dashed", lmline = TRUE, ... )
dOFV1.vs.dOFV2( xpdb1, xpdb2, xpdb3, ylb = expression(paste(Delta, OFV1[i])), xlb = expression(paste(Delta, OFV2[i])), main = "Default", smooth = NULL, abline = c(0, 1), ablcol = "grey", abllwd = 2, abllty = "dashed", lmline = TRUE, ... )
xpdb1 |
Xpose data object for first NONMEM run |
xpdb2 |
Xpose data object for second NONMEM run |
xpdb3 |
Xpose data object for third NONMEM run |
ylb |
Label for Y axis. |
xlb |
Label for X axis. |
main |
Title of plot. |
smooth |
Should we have a smooth? |
abline |
abline description. |
ablcol |
color of abline |
abllwd |
line width of abline |
abllty |
type of abline |
lmline |
Linear regression line? |
... |
Additional arguments to function. |
Andrew C. Hooker
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## read in table files xpdb8 <- xpose.data(8) xpdb8 <- xpose.data(9) xpdb11 <- xpose.data(11) ## Make the plot dOFV.vs.cov(xpdb8,xpdb9,xpdb11) ## End(Not run)
## Not run: ## read in table files xpdb8 <- xpose.data(8) xpdb8 <- xpose.data(9) xpdb11 <- xpose.data(11) ## Make the plot dOFV.vs.cov(xpdb8,xpdb9,xpdb11) ## End(Not run)
This is a compound plot consisting of plots of observations (DV), individual
predictions (IPRED), and population predictions (PRED) against the
independent variable (IDV), a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function.
dv.preds.vs.idv( object, ylb = "Observations/Predictions", layout = c(3, 1), smooth = TRUE, scales = list(), ... )
dv.preds.vs.idv( object, ylb = "Observations/Predictions", layout = c(3, 1), smooth = TRUE, scales = list(), ... )
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
layout |
A list controlling the number of columns and rows in a compound plot. The default is 2 columns and 1 row. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
scales |
A list to be used for the |
... |
Other arguments passed to |
A wide array of extra options controlling xyplots
are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns a compound plot comprising plots of observations (DV), individual predictions (IPRED), and population predictions (PRED) against the independent variable (IDV).
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
dv.vs.idv
, ipred.vs.idv
,
pred.vs.idv
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb dv.preds.vs.idv(xpdb)
## Here we load the example xpose database xpdb <- simpraz.xpdb dv.preds.vs.idv(xpdb)
This is a plot of observations (DV) vs the independent variable (IDV), a
specific function in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
dv.vs.idv(object, smooth = TRUE, ...)
dv.vs.idv(object, smooth = TRUE, ...)
object |
An xpose.data object. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
A wide array of extra options controlling xyplot
are
available. See xpose.plot.default
and
xpose.panel.default
for details.
Returns an xyplot of DV vs IDV.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb dv.vs.idv(xpdb) ## A conditioning plot dv.vs.idv(xpdb, by="HCTZ") ## Logarithmic Y-axis dv.vs.idv(xpdb, logy=TRUE)
## Here we load the example xpose database xpdb <- simpraz.xpdb dv.vs.idv(xpdb) ## A conditioning plot dv.vs.idv(xpdb, by="HCTZ") ## Logarithmic Y-axis dv.vs.idv(xpdb, logy=TRUE)
This is a plot of observations (DV) vs individual predictions (IPRED), a
specific function in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
dv.vs.ipred(object, abline = c(0, 1), smooth = TRUE, ...)
dv.vs.ipred(object, abline = c(0, 1), smooth = TRUE, ...)
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
A wide array of extra options controlling xyplot
are
available. See xpose.plot.default
and
xpose.panel.default
for details.
Returns an xyplot of DV vs IPRED.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb dv.vs.ipred(xpdb) ## A conditioning plot dv.vs.ipred(xpdb, by="HCTZ")
## Here we load the example xpose database xpdb <- simpraz.xpdb dv.vs.ipred(xpdb) ## A conditioning plot dv.vs.ipred(xpdb, by="HCTZ")
This is a plot of dependent variable (DV) vs individual predictions (IPRED)
conditioned by covariates, a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
dv.vs.ipred.by.cov( object, covs = "Default", abline = c(0, 1), smooth = TRUE, main = "Default", ... )
dv.vs.ipred.by.cov( object, covs = "Default", abline = c(0, 1), smooth = TRUE, main = "Default", ... )
object |
An xpose.data object. |
covs |
A vector of covariates to use in the plot. If "Default" the
the covariates defined in |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
A wide array of extra options controlling xyplot
are
available. See xpose.plot.default
and
xpose.panel.default
for details.
Returns a stack of xyplot
s of DV vs IPRED, conditioned on
covariates.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
dv.vs.ipred
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
dv.vs.ipred.by.cov(simpraz.xpdb, covs=c("HCTZ","WT"), max.plots.per.page=2)
dv.vs.ipred.by.cov(simpraz.xpdb, covs=c("HCTZ","WT"), max.plots.per.page=2)
This is a plot of the dependent variable (DV) vs individual predictions
(IPRED) conditioned by the independent variable, a specific function in
Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
dv.vs.ipred.by.idv(object, abline = c(0, 1), smooth = TRUE, ...)
dv.vs.ipred.by.idv(object, abline = c(0, 1), smooth = TRUE, ...)
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
A wide array of extra options controlling xyplot
are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns a stack of xyplots of DV vs IPRED, conditioned on the independent variable.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
dv.vs.ipred
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
dv.vs.ipred.by.idv(simpraz.xpdb)
dv.vs.ipred.by.idv(simpraz.xpdb)
This is a plot of observations (DV) vs population predictions (PRED), a
specific function in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function. Most of the options take their default
values from xpose.data object but may be overridden by supplying them as
arguments.
dv.vs.pred(object, abline = c(0, 1), smooth = TRUE, ...)
dv.vs.pred(object, abline = c(0, 1), smooth = TRUE, ...)
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
A wide array of extra options controlling xyplot
s are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns an xyplot of DV vs PRED.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb ## A vanilla plot dv.vs.pred(xpdb) ## A conditioning plot dv.vs.pred(xpdb, by="HCTZ")
## Here we load the example xpose database xpdb <- simpraz.xpdb ## A vanilla plot dv.vs.pred(xpdb) ## A conditioning plot dv.vs.pred(xpdb, by="HCTZ")
This is a plot of the dependent variable (DV) vs population predictions
(PRED) conditioned by covariates, a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.default
function.
Most of the options take their default values from xpose.data object but may
be overridden by supplying them as arguments.
dv.vs.pred.by.cov( object, covs = "Default", abline = c(0, 1), smooth = TRUE, main = "Default", ... )
dv.vs.pred.by.cov( object, covs = "Default", abline = c(0, 1), smooth = TRUE, main = "Default", ... )
object |
An xpose.data object. |
covs |
A vector of covariates to use in the plot. If "Default" the
the covariates defined in |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Each of the covariates in the Xpose data object, as specified in
object@Prefs@Xvardef$Covariates
, is evaluated in turn, creating a
stack of plots.
A wide array of extra options controlling xyplot
s are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns a stack of xyplots of DV vs PRED, conditioned on covariates.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
dv.vs.pred
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
dv.vs.pred.by.cov(simpraz.xpdb, covs=c("HCTZ","WT"), max.plots.per.page=2)
dv.vs.pred.by.cov(simpraz.xpdb, covs=c("HCTZ","WT"), max.plots.per.page=2)
This is a plot of the dependent variable (DV) vs population predictions
(PRED) conditioned by the independent variable, a specific function in Xpose
4. It is a wrapper encapsulating arguments to the xpose.plot.default
function. Most of the options take their default values from xpose.data
object but may be overridden by supplying them as arguments.
dv.vs.pred.by.idv(object, abline = c(0, 1), smooth = TRUE, ...)
dv.vs.pred.by.idv(object, abline = c(0, 1), smooth = TRUE, ...)
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
A wide array of extra options controlling xyplot
s are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns a stack of xyplots of DV vs PRED, conditioned on the independent variable.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
dv.vs.pred
, xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
dv.vs.pred.by.idv(simpraz.xpdb)
dv.vs.pred.by.idv(simpraz.xpdb)
This is a compound plot consisting of plots of observations (DV) against
individual predictions (IPRED) and population predictions (PRED), a specific
function in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function.
dv.vs.pred.ipred( object, xlb = "Predictions", layout = c(2, 1), abline = c(0, 1), lmline = TRUE, smooth = NULL, scales = list(), ... )
dv.vs.pred.ipred( object, xlb = "Predictions", layout = c(2, 1), abline = c(0, 1), lmline = TRUE, smooth = NULL, scales = list(), ... )
object |
An xpose.data object. |
xlb |
A string giving the label for the x-axis. |
layout |
A list giving the layout of the graphs on the plot, in columns and rows. |
abline |
Vector of arguments to the |
lmline |
logical variable specifying whether a linear regression line
should be superimposed over an |
smooth |
|
scales |
A list to be used for the |
... |
Other arguments passed to |
Plots of DV vs PRED and IPRED are presented side by side for comparison.
A wide array of extra options controlling xyplot
s are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns a compound plot comprising plots of observations (DV) against individual predictions (IPRED) and population predictions (PRED).
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
dv.vs.pred
, dv.vs.ipred
,
xpose.plot.default
, xpose.panel.default
,
xyplot
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
dv.vs.pred.ipred(simpraz.xpdb)
dv.vs.pred.ipred(simpraz.xpdb)
This function exports graphics settings for a specified Xpose data object to a file.
export.graph.par(object) xpose.write(object, file = "xpose.ini")
export.graph.par(object) xpose.write(object, file = "xpose.ini")
object |
An |
file |
The file to contain exported Xpose settings. |
This function exports the graphics settings (contents of
object@[email protected]) for a given xpose.data
object to a file,
typically 'xpose.ini'. It is a wrapper for xpose.write
. Note that the
file format is not the same as is used in
import.variable.definitions
and
export.variable.definitions
.
Null.
xpose.write()
: export graphics settings for a specified Xpose data object to
a file.
Niclas Jonsson & Justin Wilkins
import.graph.par
, xpose.prefs-class
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## For a filename prompt export.graph.par(xpdb5) ## Command-line driven xpose.write(xpdb5, "c:/XposeSettings/mytheme.ini") ## End(Not run)
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## For a filename prompt export.graph.par(xpdb5) ## Command-line driven xpose.write(xpdb5, "c:/XposeSettings/mytheme.ini") ## End(Not run)
This function exports variable definitions for a specified Xpose data object to a file.
export.variable.definitions(object, file = "")
export.variable.definitions(object, file = "")
object |
An |
file |
A file name as a string. |
This function exports variable definitions (contents of object@Prefs@Xvardef)
for a given xpose.data
object to a file, typically
'xpose.vardefs.ini'. Note that file format is not the same as used for
graphics settings. It is a wrapper for the R function dput
.
Null.
Niclas Jonsson & Justin Wilkins
import.variable.definitions
,
xpose.prefs-class
dput
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
od = setwd(tempdir()) # move to a temp directory (cur.files <- dir()) # current files in temp directory export.variable.definitions(simpraz.xpdb,file="xpose.vardefs.ini") (new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here? file.remove(new.files) # remove this file setwd(od) # restore working directory
od = setwd(tempdir()) # move to a temp directory (cur.files <- dir()) # current files in temp directory export.variable.definitions(simpraz.xpdb,file="xpose.vardefs.ini") (new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here? file.remove(new.files) # remove this file setwd(od) # restore working directory
These are functions for summarizing and plotting the results of the generalized additive model within Xpose
xp.akaike.plot( gamobj = NULL, title = "Default", xlb = "Akaike value", ylb = "Models", ... ) xp.cook(gam.object) xp.ind.inf.fit( gamobj = NULL, plot.ids = TRUE, idscex = 0.7, ptscex = 0.7, title = "Default", recur = FALSE, xlb = NULL, ylb = NULL, ... ) xp.ind.inf.terms( gamobj = NULL, xlb = NULL, ylb = NULL, plot.ids = TRUE, idscex = 0.7, ptscex = 0.7, prompt = TRUE, ... ) xp.ind.stud.res( gamobj = NULL, title = "Default", recur = FALSE, xlb = NULL, ylb = NULL ) xp.plot( gamobj = NULL, plot.ids = TRUE, idscex = 0.7, ptscex = 0.7, prompt = TRUE, ... ) xp.summary(gamobj = NULL)
xp.akaike.plot( gamobj = NULL, title = "Default", xlb = "Akaike value", ylb = "Models", ... ) xp.cook(gam.object) xp.ind.inf.fit( gamobj = NULL, plot.ids = TRUE, idscex = 0.7, ptscex = 0.7, title = "Default", recur = FALSE, xlb = NULL, ylb = NULL, ... ) xp.ind.inf.terms( gamobj = NULL, xlb = NULL, ylb = NULL, plot.ids = TRUE, idscex = 0.7, ptscex = 0.7, prompt = TRUE, ... ) xp.ind.stud.res( gamobj = NULL, title = "Default", recur = FALSE, xlb = NULL, ylb = NULL ) xp.plot( gamobj = NULL, plot.ids = TRUE, idscex = 0.7, ptscex = 0.7, prompt = TRUE, ... ) xp.summary(gamobj = NULL)
gamobj |
A GAM object to use in the plot. IF null then the user is asked to choose from a list of GAM objects in memory. |
title |
A text string indicating plot title. If |
xlb |
A text string indicating x-axis legend. If |
ylb |
A text string indicating y-axis legend. If |
... |
Other arguments passed to the GAM functions. |
gam.object |
A GAM object (see |
plot.ids |
Logical, specifies whether or not ID numbers should be displayed. |
idscex |
ID label size. |
ptscex |
Point size. |
recur |
If dispersion should be used in the GAM object. |
prompt |
Specifies whether or not the user should be prompted to press RETURN between plot pages. Default is TRUE. |
object |
An xpose.data object. |
Plots or summaries.
xp.akaike.plot()
: An Akaike plot of the results.
xp.cook()
: Individual parameters to GAM fit.
xp.ind.inf.fit()
: Individual influence on GAM fit.
xp.ind.inf.terms()
: Individual influence on GAM terms.
xp.ind.stud.res()
: Studentized residuals.
xp.plot()
: GAM residuals of base model vs. covariates.
xp.summary()
: Summarize GAM.
Niclas Jonsson & Andrew Hooker
Other GAM functions:
xp.get.disp()
,
xp.scope3()
,
xpose.bootgam()
,
xpose.gam()
,
xpose4-package
This is a template function for creating structured goodness of fit diagnostics using the functions in the Xpose specific library.
gof( runno = NULL, save = FALSE, onefile = FALSE, saveType = "pdf", pageWidth = 7.6, pageHeight = 4.9, structural = TRUE, residual = TRUE, covariate = FALSE, iiv = FALSE, iov = FALSE, all = FALSE, myTrace = xpPage )
gof( runno = NULL, save = FALSE, onefile = FALSE, saveType = "pdf", pageWidth = 7.6, pageHeight = 4.9, structural = TRUE, residual = TRUE, covariate = FALSE, iiv = FALSE, iov = FALSE, all = FALSE, myTrace = xpPage )
runno |
The run number fo Xpose to identify the appropriate files to
read. In addition |
save |
Logical. |
onefile |
Logical. |
saveType |
The type of graphics file to produce if |
pageWidth |
The width of the graphics device in inches. |
pageHeight |
The height of the graphics device in inches. |
structural |
Logical. |
residual |
Logical. |
covariate |
Logical. |
iiv |
Logical. |
iov |
Logical. |
all |
Logical. |
myTrace |
|
The gof
function is provided as a template to facilitate the
(structured) use of the functions in the Xpose specific library. Xpose
specific is extensively described in the 'Xpose Bestiary'.
The function can be renamed so that multiple scripts can be used in parallel.
The function is set up to make it easy to display plots on screen as well as to save them in files. In the latter case, plots are save in a sub-directory called 'Plots'.
The arguments structural
, residual
, covariate
,
iiv
, iov
and all
are just "switches" to different parts
of the code (if-blocks). These blocks can be removed or the default values
of the arguments changed to better suit the needs of the user.
It is also possible to add tracing information to the produced plots. This
is done via the myTrace
argument. A non-NULL value should be a
function that returns a panel.text
object. The default is the
xpPage
function that will put a string concatenated from the device
name, function name, working directory and date, in small, faint grey, font
at the bottom of each graph page. Note that the user need to add
page=myTrace
as an argument to the Xpose functions for this to have
an effect.
The function calls a support function called gofSetup
, which is
responsible for setting up the graphics device and determining the file
names for saved graphs.
Does not return anything unless the user specify a return value.
E. Niclas Jonsson, Mats Karlsson and Andrew Hooker
Other generic functions:
xpose.multiple.plot
,
xpose4-package
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## This is an example of how the function may be setup by a user. library(xpose4) mygof <- gof fix(mygof) myggof <- function (runno = NULL, save = FALSE, onefile = FALSE, saveType = "pdf", pageWidth = 7.6, pageHeight = 4.9, structural = TRUE, residual = TRUE, covariate = FALSE, iiv = FALSE, iov = FALSE, all = FALSE, myTrace=xpPage) { gofSetup(runno, save, onefile, saveType, pageWidth, pageHeight) xpdb <- xpose.data(runno) if (structural || all) { xplot <- dv.vs.pred.ipred(xpdb, page = myPage) print(xplot) } if (residual || all) { xplot <- absval.wres.vs.pred(xpdb, page = myPage) print(xplot) } if (covariate || all) { } if (iiv || all) { } if (iov || all) { } if (save) dev.off() invisible() } ## The function can then be execute, e.g.: mygof(1) ## End(Not run)
## Not run: ## This is an example of how the function may be setup by a user. library(xpose4) mygof <- gof fix(mygof) myggof <- function (runno = NULL, save = FALSE, onefile = FALSE, saveType = "pdf", pageWidth = 7.6, pageHeight = 4.9, structural = TRUE, residual = TRUE, covariate = FALSE, iiv = FALSE, iov = FALSE, all = FALSE, myTrace=xpPage) { gofSetup(runno, save, onefile, saveType, pageWidth, pageHeight) xpdb <- xpose.data(runno) if (structural || all) { xplot <- dv.vs.pred.ipred(xpdb, page = myPage) print(xplot) } if (residual || all) { xplot <- absval.wres.vs.pred(xpdb, page = myPage) print(xplot) } if (covariate || all) { } if (iiv || all) { } if (iov || all) { } if (save) dev.off() invisible() } ## The function can then be execute, e.g.: mygof(1) ## End(Not run)
This function imports graphics settings for a specified Xpose data object from a file.
import.graph.par(object, classic = FALSE)
import.graph.par(object, classic = FALSE)
object |
An |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
This function imports graphics settings (contents of
object@[email protected]) for a given xpose.data
object from a file,
typically 'xpose.ini'. It is a wrapper for xpose.read
. It returns an
xpose.data
object. Note that the file format is not the same as is
used in import.variable.definitions
and
export.variable.definitions
.
An xpose.data
object (classic = FALSE) or null
(classic = TRUE).
Niclas Jonsson & Justin Wilkins
export.graph.par
, xpose.prefs-class
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Import graphics preferences you saved earlier using export.graph.par xpdb5 <- import.graph.par(xpdb5) ## Command-line driven xpdb5 <- xpose.read(xpdb5, "c:/XposeSettings/mytheme.ini") ## End(Not run)
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Import graphics preferences you saved earlier using export.graph.par xpdb5 <- import.graph.par(xpdb5) ## Command-line driven xpdb5 <- xpose.read(xpdb5, "c:/XposeSettings/mytheme.ini") ## End(Not run)
This function imports variable definitions for a specified Xpose data object from a file.
import.variable.definitions(object, classic = FALSE)
import.variable.definitions(object, classic = FALSE)
object |
An |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
This function imports variable definitions (contents of object@Prefs@Xvardef)
for a given xpose.data
object from a file, typically
'xpose.vardefs.ini'. It returns an xpose.data
object. Note that file
format is not the same as used for graphics settings. It is a wrapper for
the R function dget
.
An xpose.data
object (classic == FALSE) or null
(classic == TRUE).
Niclas Jonsson & Justin Wilkins
export.variable.definitions
,
xpose.prefs-class
dget
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) xpdb5 <- import.variable.definitions(xpdb5) ## End(Not run)
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) xpdb5 <- import.variable.definitions(xpdb5) ## End(Not run)
This is a compound plot consisting of plots of observations (DV), individual
predictions (IPRED) and population predictions (PRED) against the
independent variable for every individual in the dataset, a specific
function in Xpose 4. It is a wrapper encapsulating arguments to the
xpose.plot.default
function.
ind.plots( object, y.vals = c(xvardef("dv", new.obj), xvardef("ipred", new.obj), xvardef("pred", new.obj)), x.vals = xvardef("idv", new.obj), id.vals = xvardef("id", new.obj), key.text = y.vals, main = "Default", key = "Default", xlb = xlabel(xvardef("idv", object), object), ylb = NULL, layout = c(4, 4), inclZeroWRES = FALSE, subset = xsubset(object), type = "o", grid = FALSE, col = c(1, 2, 4), lty = c(0, 1, 3), lwd = c(1, 1, 1), pch = c(21, 32, 32), cex = c(0.7, 0.7, 0.7), fill = c("lightgrey", 0, 0), prompt = FALSE, mirror = NULL, main.cex = 0.9, max.plots.per.page = 1, pch.ip.sp = c(21, 19, 18), cex.ip.sp = c(0.7, 0.4, 0.4), y.vals.subset = NULL, ... )
ind.plots( object, y.vals = c(xvardef("dv", new.obj), xvardef("ipred", new.obj), xvardef("pred", new.obj)), x.vals = xvardef("idv", new.obj), id.vals = xvardef("id", new.obj), key.text = y.vals, main = "Default", key = "Default", xlb = xlabel(xvardef("idv", object), object), ylb = NULL, layout = c(4, 4), inclZeroWRES = FALSE, subset = xsubset(object), type = "o", grid = FALSE, col = c(1, 2, 4), lty = c(0, 1, 3), lwd = c(1, 1, 1), pch = c(21, 32, 32), cex = c(0.7, 0.7, 0.7), fill = c("lightgrey", 0, 0), prompt = FALSE, mirror = NULL, main.cex = 0.9, max.plots.per.page = 1, pch.ip.sp = c(21, 19, 18), cex.ip.sp = c(0.7, 0.4, 0.4), y.vals.subset = NULL, ... )
object |
An xpose.data object. |
y.vals |
The Y values to use. |
x.vals |
The X values to use. |
id.vals |
The ID values to use. |
key.text |
The text in the legend to use. |
main |
The title of the plot. If |
key |
Create a legend. |
xlb |
A string giving the label for the x-axis. |
ylb |
A string giving the label for the y-axis. |
layout |
A list giving the layout of the graphs on the plot, in columns and rows. The default is 4x4. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. The default is TRUE. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
type |
1-character string giving the type of plot desired. The default
is "o", for over-plotted points and lines. See
|
grid |
Should the plots have a grid in each plot? |
col |
A list of three elements, giving plotting characters for observations, individual predictions, and population predictions, in that order. The default is black for DV, red for individual predictions, and blue for population predictions. |
lty |
A list of three elements, giving line types for observations, individual predictions, and population predictions, in that order. |
lwd |
A list of three elements, giving line widths for observations, individual predictions, and population predictions, in that order. |
pch |
A list of three elements, giving plotting characters for observations, individual predictions, and population predictions, in that order. |
cex |
A list of three elements, giving relative point size for observations, individual predictions, and population predictions, in that order. The default is c(0.7,0.7,0.7). |
fill |
Fill the circles in the points? |
prompt |
Specifies whether or not the user should be prompted to press RETURN between plot pages. Default is TRUE. |
mirror |
Mirror plots are not yet implemented in this function and this
argument must contain a value of |
main.cex |
The size of the title. |
max.plots.per.page |
Maximum number of plots per page. |
pch.ip.sp |
If there is a panel with just one observation then this specifies the type of points for the DV, IPRED and PRED respectively. |
cex.ip.sp |
If there is a panel with just one observation then this specifies the size of the points for the DV, IPRED and PRED respectively. |
y.vals.subset |
Used to subset on the DV, IPRED and PRED variables
separately. Either |
... |
Other arguments passed to |
Matrices of individual plots are presented for comparison and closer inspection.
Returns a stack of plots observations (DV) against individual predictions (IPRED) and population predictions (PRED).
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
and xpose.panel.default
for
details.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
strip.default
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb ## Monochrome, suitable for manuscript or report ind.plots(xpdb, subset="ID>40 & ID<57", col=c(1,1,1), lty=c(0,2,3), strip=function(..., bg) strip.default(..., bg="grey")) ## Not run: ## IF we simulate in NONMEM using a dense grid of time points ## and all non-observed DV items are equal to zero. ind.plots(xpdb,inclZeroWRES=TRUE,y.vals.subset=c("DV!=0","NULL","NULL")) # to plot individual plots of multiple variables ind.plots(xpdb,subset="FLAG==1") ind.plots(xpdb,subset="FLAG==2") ## End(Not run)
## Here we load the example xpose database xpdb <- simpraz.xpdb ## Monochrome, suitable for manuscript or report ind.plots(xpdb, subset="ID>40 & ID<57", col=c(1,1,1), lty=c(0,2,3), strip=function(..., bg) strip.default(..., bg="grey")) ## Not run: ## IF we simulate in NONMEM using a dense grid of time points ## and all non-observed DV items are equal to zero. ind.plots(xpdb,inclZeroWRES=TRUE,y.vals.subset=c("DV!=0","NULL","NULL")) # to plot individual plots of multiple variables ind.plots(xpdb,subset="FLAG==1") ind.plots(xpdb,subset="FLAG==2") ## End(Not run)
This is a compound plot consisting of histograms of the distribution of
weighted residuals (any weighted residual available from NONMEM) for every
individual in the dataset. It is a wrapper encapsulating arguments to the
xpose.plot.histogram
function.
ind.plots.cwres.hist(object, wres = "cwres", ...) ind.plots.wres.hist( object, main = "Default", wres = "wres", ylb = NULL, layout = c(4, 4), inclZeroWRES = FALSE, subset = xsubset(object), scales = list(cex = 0.7, tck = 0.5), aspect = "fill", force.by.factor = TRUE, ids = F, as.table = TRUE, hicol = object@[email protected]$hicol, hilty = object@[email protected]$hilty, hilwd = object@[email protected]$hilwd, hidcol = object@[email protected]$hidcol, hidlty = object@[email protected]$hidlty, hidlwd = object@[email protected]$hidlwd, hiborder = object@[email protected]$hiborder, prompt = FALSE, mirror = NULL, main.cex = 0.9, max.plots.per.page = 1, ... )
ind.plots.cwres.hist(object, wres = "cwres", ...) ind.plots.wres.hist( object, main = "Default", wres = "wres", ylb = NULL, layout = c(4, 4), inclZeroWRES = FALSE, subset = xsubset(object), scales = list(cex = 0.7, tck = 0.5), aspect = "fill", force.by.factor = TRUE, ids = F, as.table = TRUE, hicol = object@Prefs@Graph.prefs$hicol, hilty = object@Prefs@Graph.prefs$hilty, hilwd = object@Prefs@Graph.prefs$hilwd, hidcol = object@Prefs@Graph.prefs$hidcol, hidlty = object@Prefs@Graph.prefs$hidlty, hidlwd = object@Prefs@Graph.prefs$hidlwd, hiborder = object@Prefs@Graph.prefs$hiborder, prompt = FALSE, mirror = NULL, main.cex = 0.9, max.plots.per.page = 1, ... )
object |
An xpose.data object. |
wres |
Which weighted residual should we plot? Defaults to the WRES. |
... |
Other arguments passed to |
main |
The title of the plot. If |
ylb |
A string giving the label for the y-axis. |
layout |
A list giving the layout of the graphs on the plot, in columns and rows. The default is 4x4. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. The default is FALSE. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
scales |
|
aspect |
|
force.by.factor |
|
ids |
|
as.table |
|
hicol |
the fill colour of the histogram - an integer or string. The
default is blue (see |
hilty |
the border line type of the histogram - an integer. The
default is 1 (see |
hilwd |
the border line width of the histogram - an integer. The
default is 1 (see |
hidcol |
the fill colour of the density line - an integer or string.
The default is black (see |
hidlty |
the border line type of the density line - an integer. The
default is 1 (see |
hidlwd |
the border line width of the density line - an integer. The
default is 1 (see |
hiborder |
the border colour of the histogram - an integer or string.
The default is black (see |
prompt |
Specifies whether or not the user should be prompted to press RETURN between plot pages. Default is FALSE. |
mirror |
Mirror plots are not yet implemented in this function and this
argument must contain a value of |
main.cex |
The size of the title. |
max.plots.per.page |
Maximum number of plots per page |
Matrices of histograms of weighted residuals in each included individual are
displayed. ind.plots.cwres.hist
is just a wrapper for
ind.plots.wres.hist(object,wres="cwres").
Returns a compound plot comprising histograms of weighted residual conditioned on individual.
ind.plots.cwres.hist()
: Histograms of conditional
weighted residuals for each individual
E. Niclas Jonsson, Mats Karlsson, Justin Wilkins & Andrew Hooker
xpose.plot.histogram
,
xpose.panel.histogram
, histogram
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb ## A plot of the first 16 individuals ind.plots.cwres.hist(xpdb, subset="ID<18")
## Here we load the example xpose database xpdb <- simpraz.xpdb ## A plot of the first 16 individuals ind.plots.cwres.hist(xpdb, subset="ID<18")
This is a compound plot consisting of QQ plots of the distribution of
weighted residuals (any weighted residual produced by NONMEM) for every
individual in the dataset. The function is a wrapper encapsulating
arguments to the xpose.plot.qq
function.
ind.plots.cwres.qq(object, wres = "cwres", ...) ind.plots.wres.qq( object, main = "Default", wres = "wres", layout = c(4, 4), inclZeroWRES = FALSE, subset = xsubset(object), scales = list(cex = 0.7, tck = 0.5), aspect = "fill", force.by.factor = TRUE, ids = F, as.table = TRUE, type = "o", pch = object@[email protected]$pch, col = object@[email protected]$col, cex = object@[email protected]$cex, abllty = object@[email protected]$abllty, abllwd = object@[email protected]$abllwd, ablcol = object@[email protected]$ablcol, prompt = FALSE, main.cex = 0.9, mirror = NULL, max.plots.per.page = 1, ... )
ind.plots.cwres.qq(object, wres = "cwres", ...) ind.plots.wres.qq( object, main = "Default", wres = "wres", layout = c(4, 4), inclZeroWRES = FALSE, subset = xsubset(object), scales = list(cex = 0.7, tck = 0.5), aspect = "fill", force.by.factor = TRUE, ids = F, as.table = TRUE, type = "o", pch = object@Prefs@Graph.prefs$pch, col = object@Prefs@Graph.prefs$col, cex = object@Prefs@Graph.prefs$cex, abllty = object@Prefs@Graph.prefs$abllty, abllwd = object@Prefs@Graph.prefs$abllwd, ablcol = object@Prefs@Graph.prefs$ablcol, prompt = FALSE, main.cex = 0.9, mirror = NULL, max.plots.per.page = 1, ... )
object |
An xpose.data object. |
wres |
Which weighted residual should we plot? Defaults to the WRES. |
... |
Other arguments passed to |
main |
The title of the plot. If |
layout |
A list giving the layout of the graphs on the plot, in columns and rows. The default is 4x4. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. The default is FALSE. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
scales |
See |
aspect |
See |
force.by.factor |
See |
ids |
See |
as.table |
See |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
pch |
The plotting character, or symbol, to use. Specified as an
integer. See R help on |
col |
The color for lines and points. Specified as an integer or a text
string. A full list is obtained by the R command |
cex |
The amount by which plotting text and symbols should be scaled relative to the default. 'NULL' and 'NA' are equivalent to '1.0'. |
abllty |
Line type of the line of identity. |
abllwd |
Line width of the line of identity. |
ablcol |
Line colour of the line of identity. |
prompt |
Specifies whether or not the user should be prompted to press RETURN between plot pages. Default is FALSE. |
main.cex |
The size of the title. |
mirror |
Mirror plots are not yet implemented in this function and this
argument must contain a value of |
max.plots.per.page |
Maximum number of plots per page |
Matrices of Q-Q plots of weighted residuals in each included individual are displayed.
A wide array of extra options controlling Q-Q plots are available. See
xpose.plot.qq
for details.
Returns a compound plot comprising QQ plots of weighted residuals conditioned on individual.
ind.plots.cwres.qq()
: Q-Q plots of conditional
weighted residuals for each individual
E. Niclas Jonsson, Mats Karlsson, Justin Wilkins & Andrew Hooker
xpose.plot.qq
, xpose.panel.qq
,
qqplot
, qqmath
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
ind.plots.cwres.qq(simpraz.xpdb,subset="ID<18")
ind.plots.cwres.qq(simpraz.xpdb,subset="ID<18")
This is a plot of Individual predictions (IPRED) vs the independent variable
(IDV), a specific function in Xpose 4. It is a wrapper encapsulating
arguments to the xpose.plot.default
function. Most of the options
take their default values from xpose.data object but may be overridden by
supplying them as arguments.
ipred.vs.idv(object, smooth = TRUE, ...)
ipred.vs.idv(object, smooth = TRUE, ...)
object |
An xpose.data object. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
A wide array of extra options controlling xyplot
s are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns an xyplot of IPRED vs IDV.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb ipred.vs.idv(xpdb) ## A conditioning plot ipred.vs.idv(xpdb, by="HCTZ") ## Logarithmic Y-axis ipred.vs.idv(xpdb, logy=TRUE) ## Custom colours and symbols, IDs ipred.vs.idv(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
## Here we load the example xpose database xpdb <- simpraz.xpdb ipred.vs.idv(xpdb) ## A conditioning plot ipred.vs.idv(xpdb, by="HCTZ") ## Logarithmic Y-axis ipred.vs.idv(xpdb, logy=TRUE) ## Custom colours and symbols, IDs ipred.vs.idv(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
This is a histogram of the distribution of individual weighted residuals
(IWRES) in the dataset, a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.histogram
function.
iwres.dist.hist(object, ...)
iwres.dist.hist(object, ...)
object |
An xpose.data object. |
... |
Other arguments passed to |
Displays a histogram of the individual weighted residuals (IWRES).
Returns a histogram of individual weighted residuals (IWRES).
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.histogram
,
xpose.panel.histogram
, histogram
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
iwres.dist.hist(simpraz.xpdb)
iwres.dist.hist(simpraz.xpdb)
This is a QQ plot of the distribution of individual weighted residuals
(IWRES) in the dataset, a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.qq
function.
iwres.dist.qq(object, ...)
iwres.dist.qq(object, ...)
object |
An xpose.data object. |
... |
Other arguments passed to |
Displays a QQ plot of the individual weighted residuals (IWRES).
Returns a QQ plot of individual weighted residuals (IWRES).
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.qq
, xpose.panel.qq
,
qqmath
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
iwres.dist.qq(simpraz.xpdb)
iwres.dist.qq(simpraz.xpdb)
This is a plot of individual weighted residuals (IWRES) vs the independent
variable (IDV), a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
iwres.vs.idv(object, abline = c(0, 0), smooth = TRUE, ...)
iwres.vs.idv(object, abline = c(0, 0), smooth = TRUE, ...)
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
A wide array of extra options controlling xyplots
are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns an xyplot of IWRES vs IDV.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb iwres.vs.idv(xpdb) ## A conditioning plot iwres.vs.idv(xpdb, by="HCTZ")
## Here we load the example xpose database xpdb <- simpraz.xpdb iwres.vs.idv(xpdb) ## A conditioning plot iwres.vs.idv(xpdb, by="HCTZ")
Kaplan-Meier plots of (repeated) time-to-event data. Includes VPCs.
kaplan.plot( x = "TIME", y = "DV", id = "ID", data = NULL, evid = "EVID", by = NULL, xlab = "Time", ylab = "Default", object = NULL, events.to.plot = "All", sim.data = NULL, sim.zip.file = NULL, VPC = FALSE, nsim.lab = "simNumber", sim.evct.lab = "counter", probs = c(0.025, 0.975), add.baseline = T, add.last.area = T, subset = NULL, main = "Default", main.sub = "Default", main.sub.cex = 0.8, nbins = NULL, real.type = "l", real.lty = 1, real.lwd = 1, real.col = "blue", real.se = if (!is.null(sim.data)) F else T, real.se.type = "l", real.se.lty = 2, real.se.lwd = 0.5, real.se.col = "red", cens.type = "l", cens.lty = 1, cens.col = "black", cens.lwd = 1, cens.rll = 0.02, inclZeroWRES = TRUE, onlyfirst = FALSE, samp = NULL, poly.alpha = 1, poly.fill = "lightgreen", poly.line.col = "darkgreen", poly.lty = 2, censor.lines = TRUE, ylim = c(-5, 105), cov = NULL, cov.fun = "mean", ... )
kaplan.plot( x = "TIME", y = "DV", id = "ID", data = NULL, evid = "EVID", by = NULL, xlab = "Time", ylab = "Default", object = NULL, events.to.plot = "All", sim.data = NULL, sim.zip.file = NULL, VPC = FALSE, nsim.lab = "simNumber", sim.evct.lab = "counter", probs = c(0.025, 0.975), add.baseline = T, add.last.area = T, subset = NULL, main = "Default", main.sub = "Default", main.sub.cex = 0.8, nbins = NULL, real.type = "l", real.lty = 1, real.lwd = 1, real.col = "blue", real.se = if (!is.null(sim.data)) F else T, real.se.type = "l", real.se.lty = 2, real.se.lwd = 0.5, real.se.col = "red", cens.type = "l", cens.lty = 1, cens.col = "black", cens.lwd = 1, cens.rll = 0.02, inclZeroWRES = TRUE, onlyfirst = FALSE, samp = NULL, poly.alpha = 1, poly.fill = "lightgreen", poly.line.col = "darkgreen", poly.lty = 2, censor.lines = TRUE, ylim = c(-5, 105), cov = NULL, cov.fun = "mean", ... )
x |
The independent variable. |
y |
The dependent variable. event (>0) or no event (0). |
id |
The ID variable in the dataset. |
data |
A dataset can be used instead of the data in an Xpose object.
Must have the same form as an xpose data object |
evid |
The EVID data item. If not present then all rows are considered events (can be censored or an event). Otherwise, EVID!=0 are dropped from the data set. |
by |
A vector of conditioning variables. |
xlab |
X-axis label |
ylab |
Y-axis label |
object |
An Xpose object. Needed if no |
events.to.plot |
Vector of events to be plotted. "All" means that all events are plotted. |
sim.data |
The simulated data file. Should be a table file with one
header row and have, at least, columns with headers corresponding to
|
sim.zip.file |
The |
VPC |
|
nsim.lab |
The column header for |
sim.evct.lab |
The column header for |
probs |
The probabilities (non-parametric percentiles) to use in computation of the prediction intervals for the simulated data. |
add.baseline |
Should a (x=0,y=1) baseline measurement be added to each individual in the dataset. Otherwise each plot will begin at the first event in the dataset. |
add.last.area |
Should an area be added to the VPC extending the last PI? |
subset |
The subset of the data and sim.data to use. |
main |
The title of the plot. Can also be |
main.sub |
The title of the subplots. Must be a list, the same length
as the number of subplots (actual graphs), or |
main.sub.cex |
The size of the title of the subplots. |
nbins |
The number of bins to use in the VPC. If |
real.type |
Type for the real data. |
real.lty |
Line type (lty) for the curve of the original (or real) data. |
real.lwd |
Line width (lwd) for the real data. |
real.col |
Color for the curve of the original (or real) data. |
real.se |
Should the standard errors of the real (non simulated) data
be plotted? Calculated using |
real.se.type |
Type for the standard errors. |
real.se.lty |
Line type (lty) for the standard error lines. |
real.se.lwd |
Line width (lwd) for the standard error lines. |
real.se.col |
Color for the standard error lines. |
cens.type |
Type for the censored lines. |
cens.lty |
Line type (lty) for the censored lines. |
cens.col |
Color for the censored lines. |
cens.lwd |
Line width for the censored lines. |
cens.rll |
The relative line length of the censored line compared to the limits of the y-axis. |
inclZeroWRES |
Include WRES=0 rows from the real data set in the plots? |
onlyfirst |
Include only the first measurement for the real data in the plots? |
samp |
Simulated data in the xpose data object can be used as the
"real" data. |
poly.alpha |
The transparency of the VPC shaded region. |
poly.fill |
The fill color of the VPC shaded region. |
poly.line.col |
The line colors for the VPC region. |
poly.lty |
The line type for the VPC region. |
censor.lines |
Should censored observations be marked on the plot? |
ylim |
Limits for the y-axes |
cov |
The covariate in the dataset to plot instead of the survival curve. |
cov.fun |
The summary function for the covariate in the dataset to plot instead of the survival curve. |
... |
Additional arguments passed to the function. |
returns an object of class "xpose.multiple.plot".
Andrew C. Hooker
survfit
, Surv
,
xpose.multiple.plot
.
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: library(xpose4) ## Read in the data runno <- "57" xpdb <- xpose.data(runno) #################################### # here are the real data plots #################################### kaplan.plot(x="TIME",y="DV",object=xpdb) kaplan.plot(x="TIME",y="DV",object=xpdb, events.to.plot=c(1,2), by=c("DOSE==0","DOSE!=0")) kaplan.plot(x="TIME",y="DV",object=xpdb, events.to.plot=c(1,2), by=c("DOSE==0","DOSE==10", "DOSE==50","DOSE==200")) ## make a PDF of the plots pdf(file=paste("run",runno,"_kaplan.pdf",sep="")) kaplan.plot(x="TIME",y="DV",object=xpdb, by=c("DOSE==0","DOSE==10", "DOSE==50","DOSE==200")) dev.off() #################################### ## VPC plots #################################### kaplan.plot(x="TIME",y="DV",object=xpdb,VPC=T,events.to.plot=c(1)) kaplan.plot(x="TIME",y="DV",object=xpdb,VPC=T, events.to.plot=c(1,2,3), by=c("DOSE==0","DOSE!=0")) kaplan.plot(x="TIME",y="DV",object=xpdb,VPC=T, events.to.plot=c(1), by=c("DOSE==0","DOSE==10","DOSE==50","DOSE==200")) ## make a PDF of all plots pdf(file=paste("run",runno,"_kaplan.pdf",sep="")) kaplan.plot(x="TIME",y="DV",object=xpdb,VPC=T, by=c("DOSE==0","DOSE==10","DOSE==50","DOSE==200")) dev.off() ## End(Not run)
## Not run: library(xpose4) ## Read in the data runno <- "57" xpdb <- xpose.data(runno) #################################### # here are the real data plots #################################### kaplan.plot(x="TIME",y="DV",object=xpdb) kaplan.plot(x="TIME",y="DV",object=xpdb, events.to.plot=c(1,2), by=c("DOSE==0","DOSE!=0")) kaplan.plot(x="TIME",y="DV",object=xpdb, events.to.plot=c(1,2), by=c("DOSE==0","DOSE==10", "DOSE==50","DOSE==200")) ## make a PDF of the plots pdf(file=paste("run",runno,"_kaplan.pdf",sep="")) kaplan.plot(x="TIME",y="DV",object=xpdb, by=c("DOSE==0","DOSE==10", "DOSE==50","DOSE==200")) dev.off() #################################### ## VPC plots #################################### kaplan.plot(x="TIME",y="DV",object=xpdb,VPC=T,events.to.plot=c(1)) kaplan.plot(x="TIME",y="DV",object=xpdb,VPC=T, events.to.plot=c(1,2,3), by=c("DOSE==0","DOSE!=0")) kaplan.plot(x="TIME",y="DV",object=xpdb,VPC=T, events.to.plot=c(1), by=c("DOSE==0","DOSE==10","DOSE==50","DOSE==200")) ## make a PDF of all plots pdf(file=paste("run",runno,"_kaplan.pdf",sep="")) kaplan.plot(x="TIME",y="DV",object=xpdb,VPC=T, by=c("DOSE==0","DOSE==10","DOSE==50","DOSE==200")) dev.off() ## End(Not run)
Function to make stacked bar data set for categorical data plots.
make.sb.data(data, idv, dv, nbins = 6, by = NULL, by.nbins = 6, ...)
make.sb.data(data, idv, dv, nbins = 6, by = NULL, by.nbins = 6, ...)
data |
Data set to transform. |
idv |
the independent variable. |
dv |
the dependent variable. |
nbins |
the number of bins. |
by |
Conditioning variable. |
by.nbins |
by.nbins. |
... |
additional arguments. |
The Xpose team.
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
This function takes the output from the npc
command in Perl Speaks
NONMEM (PsN) and makes a coverage plot. A coverage plot for the NPC looks
at different prediction intervals (PIs) for each data point and calculates
the total number of data points in the data set lying outside of these PIs.
The plot shows the relative amount of data points outside of their PI
compared to the expected amount at that PI. In addition a confidence
interval around these values are computed based on the simulated data.
npc.coverage( npc.info = "npc_results.csv", main = "Default", main.sub = NULL, main.sub.cex = 0.85, ... )
npc.coverage( npc.info = "npc_results.csv", main = "Default", main.sub = NULL, main.sub.cex = 0.85, ... )
npc.info |
The results file from the |
main |
A string giving the plot title or |
main.sub |
Used for names above each plot when using multiple plots.
Should be a vector |
main.sub.cex |
The size of the |
... |
Other arguments passed to
|
A list of plots
Additional plot features
CI
Specifies
whether confidence intervals (as lines, a shaded area or both) should be
added to the plot. Allowed values are: "area"
,
"lines"
, "both"
, or NULL
.
mark.outside.data
Should the points outside the CI be marked in a different
color to identify them. Allowed values are TRUE
or FALSE
.
abline
Should there be a line
to mark the value of y=1? Possible values are TRUE
, FALSE
and
NULL
.
Line and area control. See plot
,
grid.polygon
and xyplot
for more
details.
CI.area.col
Color of the area
for the CI. Defaults to "blue"
CI.area.alpha
Transparency of the CI.area.col
. Defaults to 0.3.
ab.lwd
The width of the abline. Default is 1.
ab.lty
Line type of the abline. Default is "dashed"
CI.upper.lty
Line type of the line at the upper edge of the CI.
CI.upper.col
Color of the line at the upper edge of the CI.
CI.upper.lwd
The line width of the line at the upper edge of the CI.
CI.lower.lty
The line type at the lower edge of the CI.
CI.lower.col
The color of the line at the lower edge of the CI.
CI.lower.lwd
The line width of the line at the lower edge of the CI.
obs.col
The color of the observed values.
obs.pch
The type of point to use for the observed values.
obs.lty
The type of line to use for the observed values.
obs.type
The combination of lines and points
to use for the observed values. Default is "b"
for both.
obs.cex
The size of the points to use for the observed values.
obs.lwd
The line width to use for the observed values.
out.col
The color of the observed values that lie outside of the CI. Only used if
mark.outside.data=TRUE
.
out.pch
The type of point
to use for the observed values that lie outside of the CI. Only used if
mark.outside.data = TRUE
.
out.cex
The size of the
points of the observed values that lie outside of the CI. Only used if
mark.outside.data = TRUE
.
out.lwd
The line width of
the observed values that lie outside of the CI. Only used if
mark.outside.data = TRUE
.
Andrew Hooker
read.npc.vpc.results
xpose.multiple.plot.default
xyplot
Other PsN functions:
boot.hist()
,
bootscm.import()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: library(xpose4) npc.coverage() ## to read files in a directory different than the current working directory npc.file <- "./another_directory/npc_results.csv" npc.coverage(npc.info=npc.file) ## End(Not run)
## Not run: library(xpose4) npc.coverage() ## to read files in a directory different than the current working directory npc.file <- "./another_directory/npc_results.csv" npc.coverage(npc.info=npc.file) ## End(Not run)
Extract or set the value of the Nsim slot of an "xpose.data" object.
nsim(object)
nsim(object)
object |
An "xpose.data" object. |
Niclas Jonsson
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Report number of simulations nsim(xpdb5) ## End(Not run)
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Report number of simulations nsim(xpdb5) ## End(Not run)
These functions plot the parameter or covariate values stored in an Xpose data object using histograms.
cov.hist(object, onlyfirst = TRUE, main = "Default", ...) parm.hist(object, onlyfirst = TRUE, main = "Default", ...) ranpar.hist(object, onlyfirst = TRUE, main = "Default", ...)
cov.hist(object, onlyfirst = TRUE, main = "Default", ...) parm.hist(object, onlyfirst = TRUE, main = "Default", ...) ranpar.hist(object, onlyfirst = TRUE, main = "Default", ...)
object |
An xpose.data object. |
onlyfirst |
Logical value indicating if only the first row per individual is included in the plot. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Each of the parameters or covariates in the Xpose data object, as specified
in object@Prefs@Xvardef$parms
, object@Prefs@Xvardef$covariates
or object@Prefs@Xvardef$ranpar
is evaluated in turn, creating a stack
of histograms.
A wide array of extra options controlling histograms are available. See
xpose.plot.histogram
for details.
Delivers a stack of histograms.
cov.hist()
: Covariate distributions
parm.hist()
: parameter distributions
ranpar.hist()
: random parameter distributions
Andrew Hooker & Justin Wilkins
xpose.plot.histogram
,
xpose.panel.histogram
, histogram
,
xpose.data-class
, xpose.prefs-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb ## Parameter histograms parm.hist(xpdb) ## Covariate distribution, in green cov.hist(xpdb, hicol=11, hidcol="DarkGreen", hiborder="White") ## Random parameter histograms ranpar.hist(xpdb)
## Here we load the example xpose database xpdb <- simpraz.xpdb ## Parameter histograms parm.hist(xpdb) ## Covariate distribution, in green cov.hist(xpdb, hicol=11, hidcol="DarkGreen", hiborder="White") ## Random parameter histograms ranpar.hist(xpdb)
These functions plot the parameter or covariate values stored in an Xpose data object using Q-Q plots.
cov.qq(object, onlyfirst = TRUE, main = "Default", ...) parm.qq(object, onlyfirst = TRUE, main = "Default", ...) ranpar.qq(object, onlyfirst = TRUE, main = "Default", ...)
cov.qq(object, onlyfirst = TRUE, main = "Default", ...) parm.qq(object, onlyfirst = TRUE, main = "Default", ...) ranpar.qq(object, onlyfirst = TRUE, main = "Default", ...)
object |
An xpose.data object. |
onlyfirst |
Logical value indicating if only the first row per individual is included in the plot. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Each of the parameters or covariates in the Xpose data object, as specified
in object@Prefs@Xvardef$parms
, object@Prefs@Xvardef$ranpar
or
object@Prefs@Xvardef$covariates
, is evaluated in turn, creating a
stack of Q-Q plots.
A wide array of extra options controlling Q-Q plots are available. See
xpose.plot.qq
for details.
Delivers a stack of Q-Q plots.
cov.qq()
: Covariate distributions
parm.qq()
: parameter distributions
ranpar.qq()
: random parameter distributions
Andrew Hooker & Justin Wilkins
xpose.plot.qq
, xpose.panel.qq
,
qqmath
, xpose.data-class
,
xpose.prefs-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb ## parameter histograms parm.qq(xpdb) ## A stack of random parameter histograms ranpar.qq(xpdb) ## Covariate distribution, in green with red line of identity cov.qq(xpdb, col=11, ablcol=2)
## Here we load the example xpose database xpdb <- simpraz.xpdb ## parameter histograms parm.qq(xpdb) ## A stack of random parameter histograms ranpar.qq(xpdb) ## Covariate distribution, in green with red line of identity cov.qq(xpdb, col=11, ablcol=2)
These functions produce tables, printed to the screen, summarizing the individual parameter values or covariates from a dataset in Xpose 4.
cov.summary( object, onlyfirst = TRUE, subset = xsubset(object), inclZeroWRES = FALSE, out.file = ".screen", main = "Default", fill = "gray", values.to.use = xvardef("covariates", object), value.name = "Covariate", ... ) parm.summary( object, onlyfirst = TRUE, subset = xsubset(object), inclZeroWRES = FALSE, out.file = ".screen", main = "Default", fill = "gray", values.to.use = xvardef("parms", object), value.name = "Parameter", max.plots.per.page = 1, ... )
cov.summary( object, onlyfirst = TRUE, subset = xsubset(object), inclZeroWRES = FALSE, out.file = ".screen", main = "Default", fill = "gray", values.to.use = xvardef("covariates", object), value.name = "Covariate", ... ) parm.summary( object, onlyfirst = TRUE, subset = xsubset(object), inclZeroWRES = FALSE, out.file = ".screen", main = "Default", fill = "gray", values.to.use = xvardef("parms", object), value.name = "Parameter", max.plots.per.page = 1, ... )
object |
An xpose.data object. |
onlyfirst |
Logical value indicating if only the first row per individual is included in the plot. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 are included in the plot. The default is FALSE. |
out.file |
Where the results should be output to. Can be ".screen", ".ask", ".graph" or a filename in quotes. |
main |
The title of the plot. If |
fill |
The color to fill the boxes in the table if the table is printed to ".graph" |
values.to.use |
Which values should be summarized |
value.name |
The name of the values |
... |
Other arguments passed to |
max.plots.per.page |
Maximum plots per page. |
Returned is the matrix of values from the table. parm.summary
and cov.summary
produce summaries of parameters and covariates,
respectively. parm.summary
produces less attractive output but
supports mirror functionality.
parm.summary
and cov.summary
utilize
print.char.matrix
to print the information to the
screen.
cov.summary()
: Covariate summary
parm.summary()
: Parameter summary
Andrew Hooker & Justin Wilkins
Data
, SData
,
xpose.data-class
, print.char.matrix
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
parm.summary(simpraz.xpdb)
parm.summary(simpraz.xpdb)
This creates a stack of plots of Bayesian parameter estimates plotted
against covariates, and is a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
parm.vs.cov( object, onlyfirst = TRUE, smooth = TRUE, type = "p", main = "Default", ... )
parm.vs.cov( object, onlyfirst = TRUE, smooth = TRUE, type = "p", main = "Default", ... )
object |
An xpose.data object. |
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
type |
The plot type - defaults to points only. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Each of the parameters in the Xpose data object, as specified in
object@Prefs@Xvardef$parms
, is plotted against each covariate
present, as specified in object@Prefs@Xvardef$covariates
, creating a
stack of plots.
A wide array of extra options controlling xyplots
are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns a stack of xyplots and histograms of parameters against covariates.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.plot.histogram
, xyplot
,
histogram
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb <- xpose.data(5) ## A vanilla plot parm.vs.cov(xpdb) ## Custom colours and symbols, IDs parm.vs.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE) ## End(Not run)
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb <- xpose.data(5) ## A vanilla plot parm.vs.cov(xpdb) ## Custom colours and symbols, IDs parm.vs.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE) ## End(Not run)
This function plots the parameter values stored in an Xpose data object versus each other in a series of graphs. The mirror functionality is available for this function.
parm.vs.parm( object, onlyfirst = TRUE, abline = FALSE, smooth = TRUE, type = "p", main = "Default", ... )
parm.vs.parm( object, onlyfirst = TRUE, abline = FALSE, smooth = TRUE, type = "p", main = "Default", ... )
object |
An xpose.data object. |
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
abline |
Allows for a line of identity. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
type |
The plot type - defaults to points only. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Each of the parameters in the Xpose data object, as specified in
object@Prefs@Xvardef$parms
, is plotted against the rest, creating a
stack of plots.
A wide array of extra options controlling xyplots
are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns a stack of xyplots and histograms of parameters against parameters.
Andrew Hooker
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb <- xpose.data(5) parm.vs.parm(xpdb) parm.vs.parm(xpdb,mirror=3) ## End(Not run)
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb <- xpose.data(5) parm.vs.parm(xpdb) parm.vs.parm(xpdb,mirror=3) ## End(Not run)
This is a plot of population predictions (PRED) vs the independent variable
(IDV), a specific function in Xpose 4. It is a wrapper encapsulating
arguments to the xpose.plot.default
function. Most of the options
take their default values from xpose.data object but may be overridden by
supplying them as arguments.
pred.vs.idv(object, smooth = TRUE, ...)
pred.vs.idv(object, smooth = TRUE, ...)
object |
An xpose.data object. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
... |
Other arguments passed to |
A wide array of extra options controlling xyplots
are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns an xyplot of PRED vs IDV.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb pred.vs.idv(xpdb) ## A conditioning plot pred.vs.idv(xpdb, by="HCTZ") ## Logarithmic Y-axis pred.vs.idv(xpdb, logy=TRUE) ## Custom colours and symbols, IDs pred.vs.idv(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
## Here we load the example xpose database xpdb <- simpraz.xpdb pred.vs.idv(xpdb) ## A conditioning plot pred.vs.idv(xpdb, by="HCTZ") ## Logarithmic Y-axis pred.vs.idv(xpdb, logy=TRUE) ## Custom colours and symbols, IDs pred.vs.idv(xpdb, cex=0.6, pch=3, col=1, ids=TRUE)
Print an Xpose multiple plot object, which is the output from the function
xpose.multiple.plot
.
## S3 method for class 'xpose.multiple.plot' print(x, ...)
## S3 method for class 'xpose.multiple.plot' print(x, ...)
x |
Output object from the function |
... |
Additional options passed to function. |
Print method for a plot class.
Niclas Jonsson and Andrew C. Hooker
randtest
) in PsN
Reads results from the randtest
tool in PsN
and then creates a histogram.
randtest.hist( results.file = "raw_results_run1.csv", df = 1, p.val = 0.05, main = "Default", xlim = NULL, PCTSlcol = "black", vlcol = c("red", "orange"), ... )
randtest.hist( results.file = "raw_results_run1.csv", df = 1, p.val = 0.05, main = "Default", xlim = NULL, PCTSlcol = "black", vlcol = c("red", "orange"), ... )
results.file |
The location of the results file from the
|
df |
The degrees of freedom between the full and reduced model used in the randomization test. |
p.val |
The p-value you would like to use. |
main |
The title of the plot. |
xlim |
The limits of the x-axis |
PCTSlcol |
Color of the empirical line |
vlcol |
Colors of the original and nominal line |
... |
Additional arguments that can be passed to xpose.plot.histogram, xpose.panel.histogram, histogram and other lattice-package functions. |
A lattice object
Andrew Hooker
xpose.plot.histogram, xpose.panel.histogram, histogram and other lattice-package functions.
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: randtest.hist(results.file="randtest_dir1/raw_results_run1.csv",df=2) ## End(Not run)
## Not run: randtest.hist(results.file="randtest_dir1/raw_results_run1.csv",df=2) ## End(Not run)
This creates a stack of plots of Bayesian random parameter estimates plotted
against covariates, and is a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
ranpar.vs.cov( object, onlyfirst = TRUE, smooth = TRUE, type = "p", main = "Default", ... )
ranpar.vs.cov( object, onlyfirst = TRUE, smooth = TRUE, type = "p", main = "Default", ... )
object |
An xpose.data object. |
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
type |
The plot type - defaults to points only. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Each of the random parameters (ETAs) in the Xpose data object, as specified
in object@Prefs@Xvardef$ranpar
, is plotted against each covariate
present, as specified in object@Prefs@Xvardef$covariates
, creating a
stack of plots.
A wide array of extra options controlling xyplots
are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns a stack of xyplots and histograms of random parameters against covariates.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.plot.histogram
, xyplot
,
histogram
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb <- xpose.data(5) ## A vanilla plot ranpar.vs.cov(xpdb) ## Custom colours and symbols, IDs ranpar.vs.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE) ## End(Not run)
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb <- xpose.data(5) ## A vanilla plot ranpar.vs.cov(xpdb) ## Custom colours and symbols, IDs ranpar.vs.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE) ## End(Not run)
These are functions that read in a NONMEM output file (a '*.lst' file) and then format the input.
calc.npar(object) create.parameter.list(listfile) read.lst(filename)
calc.npar(object) create.parameter.list(listfile) read.lst(filename)
object |
The return value of |
listfile |
A NONMEM output file. |
filename |
A NONMEM output file. |
lists of read values.
calc.npar()
: calculates the number and type of parameters included in a
NONMEM output file
create.parameter.list()
: Reads parameters, uncertainty and termination messages included in a
NONMEM output file
read.lst()
: parses information out of NONMEM output.
Niclas Jonsson, Andrew Hooker & Justin Wilkins
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
The function reads in NONMEM table files produced from the $SIM
line
in a NONMEM model file.
read_nm_table( nm_table, only_obs = FALSE, method = "default", quiet = TRUE, sim_num = FALSE, sim_name = "NSIM" )
read_nm_table( nm_table, only_obs = FALSE, method = "default", quiet = TRUE, sim_num = FALSE, sim_name = "NSIM" )
nm_table |
The NONMEM table file to read. A text string. |
only_obs |
Should the non-observation lines in the data set be removed?
Currently filtered using the expected |
method |
The methods to use for reading the tables, Can be "readr_1", "readr_2", readr_3" or "slow". |
quiet |
Should the error message be verbose or not? |
sim_num |
Should a simulation number be added to simulation tables? |
sim_name |
What name should one use to name the column of the simulation number? |
Currently the function expects the $TABLE
to have a header for each
new simulation. This means that the NOHEADER
option or
ONEHEADER
option in the table file is not allowed.
Returns a data frame of the simulated table with an added column for
the simulation number. The data frame is given class c("tbl_df",
"tbl", "data.frame")
for easy use with dplyr
.
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
Reads one or more NONMEM table files, removes duplicated columns and merges the data into a data.frame.
read.nm.tables( table.files = NULL, runno = NULL, tab.suffix = "", table.names = c("sdtab", "mutab", "patab", "catab", "cotab", "mytab", "extra", "xptab"), cwres.name = c("cwtab"), cwres.suffix = "", quiet = FALSE, new_methods = TRUE, ... )
read.nm.tables( table.files = NULL, runno = NULL, tab.suffix = "", table.names = c("sdtab", "mutab", "patab", "catab", "cotab", "mytab", "extra", "xptab"), cwres.name = c("cwtab"), cwres.suffix = "", quiet = FALSE, new_methods = TRUE, ... )
table.files |
Exact names of table files to read. If not provided then the exact names are created using the other arguments to the function. |
runno |
Run-number to identify sets of table files. |
tab.suffix |
Table file name suffix. |
table.names |
Vector of template table file names to read. |
cwres.name |
Vector of CWRES table file names to read. |
cwres.suffix |
CWRES table file name suffix. |
quiet |
Logical value to indicate whether some warnings should be quiet or not. |
new_methods |
Should faster methods of reading tables be used (uses readr package)? |
... |
Additional arguments passed to this function |
Reads one or more table files, removes duplicate columns and merges the data. The function also checks to see if the table files are of the same length (required).
If there are header lines in the table files (for example if your data are simulated with NSUB>1), these are removed.
The table file names to read are constructed from the file name templates of
table.names
. The runno
and tab.suffix
are appended to
the file name template before checking if the file is readable.
Xpose expects, by default, to find the following NONMEM tables in the working directory to be able to create an Xpose data object (using a run number of 5 as an example):
sdtab5: The 'standard' parameters, including IWRE, IPRE, TIME, and the
NONMEM default items (DV, PRED, RES and WRES) that are added when NOAPPEND
is not present in the $TABLE
record.
$TABLE ID TIME IPRE IWRE NOPRINT ONEHEADER FILE=sdtab5
patab5: The empirical Bayes estimates of individual model parameter values, or posthoc estimates. These are model parameters, such as CL, V2, ETA1, etc.
$TABLE ID CL V2 KA K F1 ETA1 ETA2 ETA3 NOPRINT NOAPPEND ONEHEADER
FILE=patab5
catab5: Categorical covariates, e.g. SEX, RACE.
$TABLE ID SEX HIV GRP NOPRINT NOAPPEND ONEHEADER FILE=catab5
cotab5: Continuous covariates, e.g. WT, AGE.
$TABLE ID WT AGE BSA HT GGT HB NOPRINT NOAPPEND ONEHEADER FILE=cotab5
mutab5, mytab5, extra5, xptab5: Additional variables of any kind. These might be useful if there are more covariates than can be accommodated in the covariates tables, for example, or if you have other variables that should be added, e.g. CMAX, AUC.
A dataframe.
Niclas Jonsson, Andrew Hooker
xpose.data-class
, compute.cwres
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory, and that the table files have ## a suffix of '.dat', e.g. sdtab5.dat my.dataframe <- read.nm.tables(5, tab.suffix = ".dat") ## End(Not run)
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory, and that the table files have ## a suffix of '.dat', e.g. sdtab5.dat my.dataframe <- read.nm.tables(5, tab.suffix = ".dat") ## End(Not run)
This function reads in a results file from running either the PsN command
vpc
or npc
. The function then parses the file and passes the
result to plotting functions.
read.npc.vpc.results( vpc.results = NULL, npc.results = NULL, verbose = FALSE, ... )
read.npc.vpc.results( vpc.results = NULL, npc.results = NULL, verbose = FALSE, ... )
vpc.results |
The name of the results file from running the PsN command
|
npc.results |
The name of the results file from running the PsN command
|
verbose |
Text messages passed to screen or not. |
... |
arguments passed to other functions. |
One of vpc.results
or npc.results
are necessary. If both or
none are defined then the function does nothing and a NULL
is
returned from the function.
A list of values is returned.
model.file |
The model file
that PsN ran either the |
dv.var |
The dependent variable used in the calculations. |
idv.var |
The
independent variable used in the calculations. |
num.tables |
The number of separate tables in the results file. |
by.interval |
The conditioning interval
for the stratification variable, only returned if |
result.tables |
The results tables from the results file. this is a list. |
Andrew Hooker
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Read (repeated) time-to-event simulation data files.
read.TTE.sim.data( sim.file, subset = NULL, headers = c("REP", "ID", "DV", "TIME", "FLAG2", "DOSE"), xpose.table.file = FALSE, ... )
read.TTE.sim.data( sim.file, subset = NULL, headers = c("REP", "ID", "DV", "TIME", "FLAG2", "DOSE"), xpose.table.file = FALSE, ... )
sim.file |
Name of the simulated file. |
subset |
subset to extract. |
headers |
headers in file. |
xpose.table.file |
xpose table files. |
... |
Extra arguments passed to function. |
Andrew C. Hooker
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
This function read in the vpctab file created from PsN and gathers the information needed to make a vpc plot.
read.vpctab( vpctab = NULL, object = NULL, vpc.name = "vpctab", vpc.suffix = "", tab.suffix = "", inclZeroWRES = FALSE, verbose = FALSE, ... )
read.vpctab( vpctab = NULL, object = NULL, vpc.name = "vpctab", vpc.suffix = "", tab.suffix = "", inclZeroWRES = FALSE, verbose = FALSE, ... )
vpctab |
The vpctab file from a ' |
object |
An xpose data object. Created from |
vpc.name |
The default name of the vpctab file. Used if only
|
vpc.suffix |
The suffix of the vpctab file. Used if only |
tab.suffix |
The table suffix of the vpctab file. Used if only
|
inclZeroWRES |
If there are no zero valued weighted residuals in the
|
verbose |
Text messages passed to screen or not. |
... |
Other arguments passed to other functions. |
Returned is an xpose data object with vpctab information included.
Andrew Hooker
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Function to reset Xpose's graphics parameters definitions to the default.
reset.graph.par(object, classic = FALSE)
reset.graph.par(object, classic = FALSE)
object |
An |
classic |
A logical operator specifying whether the function should assume the classic menu system. This is an internal option and need never be called from the command line. |
This functions is used to reset Xpose's graphic settings definitions to their default values. Graphical settings are read from the file 'xpose.ini' in the root of the 'xpose4' package.
An xpose.data
object (classic == FALSE) or null
(classic == TRUE).
Niclas Jonsson & Justin Wilkins
xpose.prefs-class
, import.graph.par
,
change.xvardef
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Import graphics preferences you saved earlier using export.graph.par xpdb5 <- import.graph.par(xpdb5) ## Reset to default values xpdb5 <- reset.graph.par(xpdb5) ## Change WRES definition xpdb5 <- change.wres(xpdb5) ## End(Not run)
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Import graphics preferences you saved earlier using export.graph.par xpdb5 <- import.graph.par(xpdb5) ## Reset to default values xpdb5 <- reset.graph.par(xpdb5) ## Change WRES definition xpdb5 <- change.wres(xpdb5) ## End(Not run)
Function to build Xpose run summaries.
runsum( object, dir = "", modfile = paste(dir, "run", object@Runno, ".mod", sep = ""), listfile = paste(dir, "run", object@Runno, ".lst", sep = ""), main = NULL, subset = xsubset(object), show.plots = TRUE, txt.cex = 0.7, txt.font = 1, show.ids = FALSE, param.table = TRUE, txt.columns = 2, force.wres = FALSE, ... )
runsum( object, dir = "", modfile = paste(dir, "run", object@Runno, ".mod", sep = ""), listfile = paste(dir, "run", object@Runno, ".lst", sep = ""), main = NULL, subset = xsubset(object), show.plots = TRUE, txt.cex = 0.7, txt.font = 1, show.ids = FALSE, param.table = TRUE, txt.columns = 2, force.wres = FALSE, ... )
object |
An xpose.data object. |
dir |
The directory to look for the model and output file of a NONMEM run. |
modfile |
The name of the NONMEM control stream associated with the current run. |
listfile |
The name of the NONMEM output file associated with the current run. |
main |
A string giving the main heading. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
show.plots |
Logical indicating if GOF plots should be shown in the run summary. |
txt.cex |
Number indicating the size of the txt in the run summary. |
txt.font |
Font of the text in the run summary. |
show.ids |
Logical indicating if IDs should be plotted in the plots for the run summary. |
param.table |
Logical indicating if the parameter table should be shown in the run summary. |
txt.columns |
The number of text columns in the run summary. |
force.wres |
Plot the WRES even if other residuals are available. |
... |
Other arguments passed to the various functions. |
A compound plot containing an Xpose run summary is created.
Niclas Jonsson and Andrew Hooker
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
od = setwd(tempdir()) # move to a temp directory (cur.files <- dir()) # current files in temp directory simprazExample(overwrite=TRUE) # write files (new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here? xpdb <- xpose.data(1) runsum(xpdb) file.remove(new.files) # remove these files setwd(od) # restore working directory
od = setwd(tempdir()) # move to a temp directory (cur.files <- dir()) # current files in temp directory simprazExample(overwrite=TRUE) # write files (new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here? xpdb <- xpose.data(1) runsum(xpdb) file.remove(new.files) # remove these files setwd(od) # restore working directory
Xpose database from the NONMEM output of a model for prazosin using simulated data (and NONMEM 7.3).
simpraz.xpdb
simpraz.xpdb
an xpose.data object
The database can be used to test functions in Xpose 4. This database is
slightly different than the database that is created when reading in the
files created by simprazExample
using
xpose.data
.
xpose.print(simpraz.xpdb) Data(simpraz.xpdb) str(simpraz.xpdb)
xpose.print(simpraz.xpdb) Data(simpraz.xpdb) str(simpraz.xpdb)
Creates NONMEM data, model and output files for a model of prazosin using simulated data.
simprazExample(overwrite = FALSE)
simprazExample(overwrite = FALSE)
overwrite |
Logical. Should the function overwrite files with the same names already in the current working directory? |
Creates files in the current working directory named: run1.ext run1.lst run1.mod simpraz.dta xptab1
Niclas Jonsson and Andrew Hooker
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
od = setwd(tempdir()) # move to a temp directory (cur.files <- dir()) # current files in temp directory simprazExample(overwrite=TRUE) # write files (new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here? file.remove(new.files) # remove these files setwd(od) # restore working directory
od = setwd(tempdir()) # move to a temp directory (cur.files <- dir()) # current files in temp directory simprazExample(overwrite=TRUE) # write files (new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here? file.remove(new.files) # remove these files setwd(od) # restore working directory
This function provides a summary of the model's parameter estimates and precision.
tabulate.parameters(object, prompt = FALSE, outfile = NULL, dir = "")
tabulate.parameters(object, prompt = FALSE, outfile = NULL, dir = "")
object |
An xpose.data object. |
prompt |
Ask before printing. |
outfile |
file to output to (NULL means screen). |
dir |
Which directory is the NONMEM output file located. |
A table summarizing the parameters and their precision.
Niclas Jonsson, Andrew Hooker & Justin Wilkins
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
od = setwd(tempdir()) # move to a temp directory (cur.files <- dir()) # current files in temp directory simprazExample(overwrite=TRUE) # write files (new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here? xpdb <- xpose.data(1) # read in files to xpose database tabulate.parameters(xpdb) file.remove(new.files) # remove these files setwd(od) # restore working directory
od = setwd(tempdir()) # move to a temp directory (cur.files <- dir()) # current files in temp directory simprazExample(overwrite=TRUE) # write files (new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here? xpdb <- xpose.data(1) # read in files to xpose database tabulate.parameters(xpdb) file.remove(new.files) # remove these files setwd(od) # restore working directory
This is a histogram of the distribution of weighted residuals (WRES) in the
dataset, a specific function in Xpose 4. It is a wrapper encapsulating
arguments to the xpose.plot.histogram
function.
wres.dist.hist(object, ...)
wres.dist.hist(object, ...)
object |
An xpose.data object. |
... |
Other arguments passed to |
Displays a histogram of the weighted residuals (WRES).
Returns a histogram of weighted residuals (WRES).
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.histogram
,
xpose.panel.histogram
, histogram
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb wres.dist.hist(xpdb)
## Here we load the example xpose database xpdb <- simpraz.xpdb wres.dist.hist(xpdb)
This is a QQ plot of the distribution of weighted residuals (WRES) in the
dataset, a specific function in Xpose 4. It is a wrapper encapsulating
arguments to the xpose.plot.qq
function.
wres.dist.qq(object, ...)
wres.dist.qq(object, ...)
object |
An xpose.data object. |
... |
Other arguments passed to |
Displays a QQ plot of the weighted residuals (WRES).
Returns a QQ plot of weighted residuals (WRES).
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.qq
, xpose.panel.qq
,
qqmath
, xpose.prefs-class
,
compute.cwres
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb wres.dist.qq(xpdb)
## Here we load the example xpose database xpdb <- simpraz.xpdb wres.dist.qq(xpdb)
This creates a stack of plots of weighted residuals (WRES) plotted against
covariates, and is a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
and
xpose.plot.histogram
functions. Most of the options take their
default values from xpose.data object but may be overridden by supplying
them as arguments.
wres.vs.cov( object, ylb = "WRES", smooth = TRUE, type = "p", main = "Default", ... )
wres.vs.cov( object, ylb = "WRES", smooth = TRUE, type = "p", main = "Default", ... )
object |
An xpose.data object. |
ylb |
A string giving the label for the y-axis. |
smooth |
A |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
main |
The title of the plot. If |
... |
Other arguments passed to |
Weighted residuals (WRES) are plotted against each covariate present, as
specified in object@Prefs@Xvardef$covariates
, creating a stack of
plots.
A wide array of extra options controlling xyplots and histograms are
available. See xpose.plot.default
and
xpose.plot.histogram
for details.
Returns a stack of xyplots and histograms of CWRES versus covariates.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.plot.histogram
, xyplot
,
histogram
, xpose.prefs-class
,
xpose.data-class
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot wres.vs.cov(xpdb) ## Custom colours and symbols, IDs wres.vs.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE) ## End(Not run)
## Not run: ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Here we load the example xpose database data(simpraz.xpdb) xpdb <- simpraz.xpdb ## A vanilla plot wres.vs.cov(xpdb) ## Custom colours and symbols, IDs wres.vs.cov(xpdb, cex=0.6, pch=3, col=1, ids=TRUE) ## End(Not run)
This is a plot of population weighted residuals (WRES) vs the independent
variable (IDV), a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
wres.vs.idv(object, abline = c(0, 0), smooth = TRUE, ...)
wres.vs.idv(object, abline = c(0, 0), smooth = TRUE, ...)
object |
An xpose.data object. |
abline |
Vector of arguments to the |
smooth |
A |
... |
Other arguments passed to |
Weighted residuals (WRES) are plotted against the independent variable, as
specified in object@Prefs@Xvardef$idv
.
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns an xyplot of WRES vs IDV.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
,
xpose.panel.default
, xyplot
,
xpose.prefs-class
, xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb wres.vs.idv(xpdb) ## A conditioning plot wres.vs.idv(xpdb, by="HCTZ")
## Here we load the example xpose database xpdb <- simpraz.xpdb wres.vs.idv(xpdb) ## A conditioning plot wres.vs.idv(xpdb, by="HCTZ")
This creates a box and whisker plot of weighted residuals (WRES) vs the
independent variable (IDV), and is a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.bw
function. Most
of the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
wres.vs.idv.bw(object, ...)
wres.vs.idv.bw(object, ...)
object |
An xpose.data object. |
... |
Other arguments passed to |
This creates a box and whisker plot of weighted residuals (WRES) vs the
independent variable (IDV), and is a specific function in Xpose 4. It is a
wrapper encapsulating arguments to the xpose.plot.bw
function. Most
of the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
A wide array of extra options controlling bwplots are available. See
xpose.plot.bw
and xpose.panel.bw
for details.
Returns a stack of box-and-whisker plots of WRES vs IDV.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.bw
, xpose.panel.bw
,
bwplot
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb wres.vs.idv.bw(xpdb)
## Here we load the example xpose database xpdb <- simpraz.xpdb wres.vs.idv.bw(xpdb)
This is a plot of population weighted residuals (WRES) vs population
predictions (PRED), a specific function in Xpose 4. It is a wrapper
encapsulating arguments to the xpose.plot.default
function. Most of
the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
wres.vs.pred(object, smooth = TRUE, abline = c(0, 0), ...)
wres.vs.pred(object, smooth = TRUE, abline = c(0, 0), ...)
object |
An xpose.data object. |
smooth |
Logical value indicating whether an x-y smooth should be superimposed. The default is TRUE. |
abline |
Vector of arguments to the |
... |
Other arguments passed to |
A wide array of extra options controlling xyplots are available. See
xpose.plot.default
and xpose.panel.default
for
details.
Returns an xyplot of WRES vs PRED.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.default
, xyplot
,
xpose.prefs-class
, compute.cwres
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb wres.vs.pred(xpdb) ## A conditioning plot wres.vs.pred(xpdb, by="HCTZ")
## Here we load the example xpose database xpdb <- simpraz.xpdb wres.vs.pred(xpdb) ## A conditioning plot wres.vs.pred(xpdb, by="HCTZ")
This creates a box and whisker plot of weighted residuals (WRES) vs
population predictions (PRED), and is a specific function in Xpose 4. It is
a wrapper encapsulating arguments to the xpose.plot.bw
function. Most
of the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
wres.vs.pred.bw(object, ...)
wres.vs.pred.bw(object, ...)
object |
An xpose.data object. |
... |
Other arguments passed to |
This creates a box and whisker plot of weighted residuals (WRES) vs
population predictions (PRED), and is a specific function in Xpose 4. It is
a wrapper encapsulating arguments to the xpose.plot.bw
function. Most
of the options take their default values from xpose.data object but may be
overridden by supplying them as arguments.
A wide array of extra options controlling bwplots are available. See
xpose.plot.bw
and xpose.panel.bw
for details.
Returns a box-and-whisker plot of WRES vs PRED.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.bw
, xpose.panel.bw
,
bwplot
, xpose.prefs-class
,
xpose.data-class
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Here we load the example xpose database xpdb <- simpraz.xpdb wres.vs.pred.bw(xpdb)
## Here we load the example xpose database xpdb <- simpraz.xpdb wres.vs.pred.bw(xpdb)
This function extracts and sets label definitions in Xpose data objects.
xlabel(x, object) xlabel(object) <- value
xlabel(x, object) xlabel(object) <- value
x |
Name of the variable to assign a label to. |
object |
An |
value |
A two element vector of which the first element is the name of the variable and the second the label |
x
should be a string exactly matching the name of a column in the
data.frame in the Data slot of an xpose.data object. The name of columns
defined through xpose variable definitions (see xpose.data
)
can be extracted using the xvardef
function and to be used in the
xlabel
function, e.g. xlabel(xvardef("dv",object),object)
,
which would give the label for the dv
variable.
The label of the specified column.
xlabel(object) <- value
: sets label definitions in Xpose data objects. assigned value should be a two-element vector
of which the first element is the name of
the variable and the second the label
Niclas Jonsson
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xpose.data
,
xpose.print()
,
xpose4-package
,
xsubset()
xpdb <- simpraz.xpdb ## Display label for dependent variable in the Xpose data object xlabel("DV", xpdb) ## Set label for dependent variable xlabel(xpdb) <- c("DV", "Concentration (mg/L)") xlabel("DV", xpdb) # how has this chnaged?
xpdb <- simpraz.xpdb ## Display label for dependent variable in the Xpose data object xlabel("DV", xpdb) ## Set label for dependent variable xlabel(xpdb) <- c("DV", "Concentration (mg/L)") xlabel("DV", xpdb) # how has this chnaged?
This function creates a plot of the estimates for covariate coefficients, obtained from the first step (univariate testing) in each scm performed in the bootscm. When normalized for their standard deviation, these plots can be used to compare the strength of the covariate relationship. Coloring is based on the covariate being included in the final model (blue) not being included (red).
xp.boot.par.est( bootgam.obj = NULL, sd.norm = TRUE, by.cov.type = FALSE, abs.values = FALSE, show.data = TRUE, show.means = TRUE, show.bias = TRUE, dotpch = c(1, 19), labels = NULL, pch.mean = "|", xlab = NULL, ylab = NULL, col = c(rgb(0.8, 0.5, 0.5), rgb(0.2, 0.2, 0.7), rgb(0.2, 0.2, 0.7), rgb(0.6, 0.6, 0.6)), ... )
xp.boot.par.est( bootgam.obj = NULL, sd.norm = TRUE, by.cov.type = FALSE, abs.values = FALSE, show.data = TRUE, show.means = TRUE, show.bias = TRUE, dotpch = c(1, 19), labels = NULL, pch.mean = "|", xlab = NULL, ylab = NULL, col = c(rgb(0.8, 0.5, 0.5), rgb(0.2, 0.2, 0.7), rgb(0.2, 0.2, 0.7), rgb(0.6, 0.6, 0.6)), ... )
bootgam.obj |
The object created using bootscm.import(), which hold the data for plotting. |
sd.norm |
Perform normalization of the covariate coefficients (default is TRUE). When TRUE, the estimated covariate coefficients will be multiplied by the standard deviation of the specific covariate (both for continuous and categorical covariates). |
by.cov.type |
Split the plot for continuous and dichotomous covariates. Default is FALSE. |
abs.values |
Show the covariate coefficient in absolute values. Default is FALSE. |
show.data |
Show the actual covariate coefficients in the plot. Default is TRUE. |
show.means |
Show the means of included covariates (blue) and all covariates (grey) in the plot. Default is TRUE. |
show.bias |
Show estimated bias as text in the plot. Default is TRUE. |
dotpch |
The character used for plotting. |
labels |
Custom labels for the parameter-covariate relationships, (character vector) |
pch.mean |
The character used for plotting the mean. |
xlab |
Custom x-axis label |
ylab |
Custom y-axis label |
col |
The color scheme. |
... |
Additional plotting arguments may be passed to this function. |
Optionally, estimated bias is plotted in the graph (as text). Bias is also shown by the difference in mean of parameter estimates when the covariate is included (blue diamond), as opposed to the mean of all parameter estimates (grey diamond)
Note: For dichotomous covariates, the default PsN implementation is to use the most common covariate value as base, while the effect of the other value, is estimated by a theta. Xpose (bootscm.import) however recalculates the estimated parameters, to the parametrization in which the lowest value of the dichotomous covariate is the base (e.g. 0), and the estimated THETA denotes the proportional change, when the covariate has the other value (e.g. 1).
No value returned.
Ron Keizer
xp.boot.par.est()
xp.boot.par.est()
This function creates a plot showing the correlations in estimates for covariate coefficients, obtained from the first step (univariate testing) in each scm performed in the bootscm.
xp.boot.par.est.corr( bootgam.obj = NULL, sd.norm = TRUE, by.cov.type = FALSE, cov.plot = NULL, ask.covs = FALSE, dotpch = 19, col = rgb(0.2, 0.2, 0.9, 0.75), ... )
xp.boot.par.est.corr( bootgam.obj = NULL, sd.norm = TRUE, by.cov.type = FALSE, cov.plot = NULL, ask.covs = FALSE, dotpch = 19, col = rgb(0.2, 0.2, 0.9, 0.75), ... )
bootgam.obj |
The object created using bootscm.import(), which hold the data for plotting. |
sd.norm |
Perform normalization of the covariate coefficients (default is TRUE). When TRUE, the estimated covariate coefficients will be multiplied by the standard deviation of the specific covariate (both for continuous and categorical covariates). |
by.cov.type |
Split the plot for continuous and dichotomous covariates. Default is FALSE. |
cov.plot |
A character vector which lists the covariates to include in the plot. If none are specified (NULL), all covariate coefficients will be included in the plot. |
ask.covs |
Ask the user which covariates to include in the plot. Default is FALSE. |
dotpch |
The character used for plotting. |
col |
The colors used for plotting. |
... |
Additional plotting arguments may be passed to this function. |
No value returned.
Ron Keizer
## Not run: xp.boot.par.est.corr(current.bootscm, sd.norm = TRUE, cov.plot = c("CLSEX", "VSEX", "CLWT")) ## End(Not run)
## Not run: xp.boot.par.est.corr(current.bootscm, sd.norm = TRUE, cov.plot = c("CLSEX", "VSEX", "CLWT")) ## End(Not run)
Distribution of difference in AIC
xp.daic.npar.plot( bootscm.obj = NULL, main = NULL, xlb = "Difference in AIC", ylb = "Density", ... )
xp.daic.npar.plot( bootscm.obj = NULL, main = NULL, xlb = "Difference in AIC", ylb = "Density", ... )
bootscm.obj |
a bootscm object. |
main |
The title of the plot |
xlb |
The x-label of the plot |
ylb |
The y-label of the plot |
... |
Additional parameters passed to |
A lattice plot object.
Other bootgam:
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Other bootscm:
bootscm.import()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
This function creates a kernel smoothed plot of the number of covariates included in the final model in each gam/scm in the bootgam/bootscm procedure.
xp.distr.mod.size( bootgam.obj = NULL, boot.type = NULL, main = NULL, bw = 0.5, xlb = NULL, ... )
xp.distr.mod.size( bootgam.obj = NULL, boot.type = NULL, main = NULL, bw = 0.5, xlb = NULL, ... )
bootgam.obj |
The bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
Plot title. |
bw |
The smoothing bandwidth to be used for the kernel. |
xlb |
The x-axis label. |
... |
Additional plotting parameter may be passed to this function. |
A lattice plot object will be returned.
Ron Keizer
Distribution of difference in OFV
xp.dofv.npar.plot( bootscm.obj = NULL, main = NULL, xlb = "Difference in OFV", ylb = "Density", ... )
xp.dofv.npar.plot( bootscm.obj = NULL, main = NULL, xlb = "Difference in OFV", ylb = "Density", ... )
bootscm.obj |
a bootscm object. |
main |
The title of the plot |
xlb |
The x-label of the plot |
ylb |
The y-label of the plot |
... |
Additional parameters passed to |
A lattice plot object.
Other bootgam:
xp.daic.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Other bootscm:
bootscm.import()
,
xp.daic.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
A plot of the difference in OFV between final bootscm models and the reference final scm model.
xp.dofv.plot( bootscm.obj = NULL, main = NULL, xlb = "Difference in OFV", ylb = "Density", ... )
xp.dofv.plot( bootscm.obj = NULL, main = NULL, xlb = "Difference in OFV", ylb = "Density", ... )
bootscm.obj |
The bootgam or bootscm object. |
main |
Plot title. |
xlb |
Label for x-axis. |
ylb |
Label for y-axis. |
... |
Additional plotting parameters. |
A lattice plot object is returned.
Ron Keizer
xpose.gam
.Default function for calculating dispersion in xpose.gam
.
xp.get.disp(gamdata, parnam, covnams, family = "gaussian", ...)
xp.get.disp(gamdata, parnam, covnams, family = "gaussian", ...)
gamdata |
the data used for a GAM |
parnam |
ONE (and only one) model parameter name. |
covnams |
Covariate names to test on parameter. |
family |
Assumption for the parameter distribution. |
... |
Used to pass arguments to more basic functions. |
a list including the dispersion
Other GAM functions:
GAM_summary_and_plot
,
xp.scope3()
,
xpose.bootgam()
,
xpose.gam()
,
xpose4-package
Trace plots for conditional indices
xp.inc.cond.stab.cov( bootgam.obj = NULL, boot.type = NULL, main = NULL, xlb = "Bootstrap replicate number", ylb = "Conditional inclusion frequency", normalize = TRUE, split.plots = FALSE, ... )
xp.inc.cond.stab.cov( bootgam.obj = NULL, boot.type = NULL, main = NULL, xlb = "Bootstrap replicate number", ylb = "Conditional inclusion frequency", normalize = TRUE, split.plots = FALSE, ... )
bootgam.obj |
The bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
The title of the plot |
xlb |
The x-label of the plot |
ylb |
The y-label of the plot |
normalize |
Should one normalize? |
split.plots |
Should the plots be split? |
... |
Additional parameters passed to |
A lattice plot object.
Other bootgam:
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Other bootscm:
bootscm.import()
,
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Trace plots for conditional indices rper replicate number
xp.inc.ind.cond.stab.cov( bootgam.obj = NULL, boot.type = NULL, main = NULL, xlb = "Bootstrap replicate number", ylb = "Conditional inclusion frequency", limits = c(0.2, 0.8), normalize = TRUE, split.plots = FALSE, start = 25, ... )
xp.inc.ind.cond.stab.cov( bootgam.obj = NULL, boot.type = NULL, main = NULL, xlb = "Bootstrap replicate number", ylb = "Conditional inclusion frequency", limits = c(0.2, 0.8), normalize = TRUE, split.plots = FALSE, start = 25, ... )
bootgam.obj |
The bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
The title of the plot |
xlb |
The x-label of the plot |
ylb |
The y-label of the plot |
limits |
Limits for the inclusion index. |
normalize |
Should one normalize? |
split.plots |
Should the plots be split? |
start |
When to start. |
... |
Arguments passed to other functions. |
A lattice plot object.
Other bootgam:
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Other bootscm:
bootscm.import()
,
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Plot the inclusion frequencies of covariates in the final models obtained in a bootgam or bootscm. Covariates are ordered by inclusion frequency.
xp.inc.prob( bootgam.obj = NULL, boot.type = NULL, main = NULL, col = "#6495ED", xlb = NULL, ylb = "Covariate", ... )
xp.inc.prob( bootgam.obj = NULL, boot.type = NULL, main = NULL, col = "#6495ED", xlb = NULL, ylb = "Covariate", ... )
bootgam.obj |
The bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
Plot title |
col |
Color used for the plot. |
xlb |
Label for x-axis. |
ylb |
Label for y-axis. |
... |
Additional plotting parameters. |
A lattice plot object will be returned.
Ron Keizer
Plot the inclusion frequency of the most common 2-covariate combinations.
xp.inc.prob.comb.2( bootgam.obj = NULL, boot.type = NULL, main = NULL, col = "#6495ED", xlb = NULL, ylb = "Covariate combination", ... )
xp.inc.prob.comb.2( bootgam.obj = NULL, boot.type = NULL, main = NULL, col = "#6495ED", xlb = NULL, ylb = "Covariate combination", ... )
bootgam.obj |
The bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
Plot title |
col |
Color used for plot. |
xlb |
Label for x-axis. |
ylb |
Label for y-axis. |
... |
Additional plotting parameters. |
A lattice plot object will be returned.
Ron Keizer
Inclusion stability plot
A plot of the inclusion frequency of covariates vs bootgam/bootscm iteration number. This plot can be used to evaluate whether sufficient iterations have been performed.
xp.inc.stab.cov( bootgam.obj = NULL, boot.type = NULL, main = NULL, normalize = TRUE, split.plots = FALSE, xlb = "Bootstrap replicate number", ylb = "Difference of estimate with final", ... )
xp.inc.stab.cov( bootgam.obj = NULL, boot.type = NULL, main = NULL, normalize = TRUE, split.plots = FALSE, xlb = "Bootstrap replicate number", ylb = "Difference of estimate with final", ... )
bootgam.obj |
The bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
Plot title |
normalize |
Should the plot be normalized? |
split.plots |
Should the plots be split? |
xlb |
The label for the x-axis. |
ylb |
The label for the y-axis. |
... |
Additional plotting parameters |
A lattice plot object is returned.
Ron Keizer
Other bootgam:
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Other bootscm:
bootscm.import()
,
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.incl.index.cov()
,
xp.incl.index.cov.ind()
Covariate inclusion indices show the correlation in inclusion of a covariate in the final model in a bootgam or bootscm.
xp.incl.index.cov( bootgam.obj = NULL, boot.type = NULL, main = NULL, xlb = "Index", ylb = "Covariate", add.ci = FALSE, incl.range = NULL, return_plot = TRUE, results.tab = NULL, ... )
xp.incl.index.cov( bootgam.obj = NULL, boot.type = NULL, main = NULL, xlb = "Index", ylb = "Covariate", add.ci = FALSE, incl.range = NULL, return_plot = TRUE, results.tab = NULL, ... )
bootgam.obj |
The bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
Plot title. |
xlb |
Label for the x-axis. |
ylb |
Label for the y-axis. |
add.ci |
Add a confidence interval to the plotted data. |
incl.range |
Included range |
return_plot |
Should the function return a plot? |
results.tab |
Specify your own results table. |
... |
Additional plotting information. |
A lattice plot object is returned.
Ron Keizer
Other bootgam:
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov.ind()
Other bootscm:
bootscm.import()
,
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov.ind()
A plot showing the range of inclusion indices for individuals for all covariates. This plot can be used to evaluate whether there were covariates which were more influenced by the constituency of the bootstrapped dataset than others.
xp.incl.index.cov.comp( bootgam.obj = NULL, boot.type = NULL, main = NULL, xlb = "Individual inclusion index", ylb = "ID", ... )
xp.incl.index.cov.comp( bootgam.obj = NULL, boot.type = NULL, main = NULL, xlb = "Individual inclusion index", ylb = "ID", ... )
bootgam.obj |
A bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
main |
The title of the plot. |
xlb |
The label for the x-axis. |
ylb |
The label for the y-axis. |
... |
Additional plotting parameters. |
A lattice plot object is returned.
Ron Keizer
This function will generate a plot of individual inclusion indexes for a specific covariate, which can be used to identify influential individuals for inclusion of that covariate. The index for an individual is calculated as the observed number of inclusions of that individual when the specific covariate was included minus the expected number of inclusions (based on the total bootstrap inclusions), divided by expected.
xp.incl.index.cov.ind( bootgam.obj = NULL, boot.type = NULL, cov.name = NULL, main = NULL, ylb = "ID", xlb = "Individual inclusion index", return_plot = TRUE, results.tab = NULL, ... )
xp.incl.index.cov.ind( bootgam.obj = NULL, boot.type = NULL, cov.name = NULL, main = NULL, ylb = "ID", xlb = "Individual inclusion index", return_plot = TRUE, results.tab = NULL, ... )
bootgam.obj |
A bootgam or bootscm object. |
boot.type |
Either "bootgam" or "bootscm". Default is NULL, which means the user will be asked to make a choice. |
cov.name |
The name of the covariate for which to create the plot. |
main |
The title of the plot. |
ylb |
The label for the x-axis. |
xlb |
The label for the y-axis. |
return_plot |
Should a plot object be returned? |
results.tab |
Supply your own results table. |
... |
Additional plotting parameters. |
A lattice plot object is returned.
Ron Keizer
Other bootgam:
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
Other bootscm:
bootscm.import()
,
xp.daic.npar.plot()
,
xp.dofv.npar.plot()
,
xp.inc.cond.stab.cov()
,
xp.inc.ind.cond.stab.cov()
,
xp.inc.stab.cov()
,
xp.incl.index.cov()
scope
argument in
xpose.gam
Define a scope for the gam. Used as default input to the scope
argument in
xpose.gam
xp.scope3( object, covnam = xvardef("covariates", object), nmods = 3, smoother1 = 0, arg1 = NULL, smoother2 = 1, arg2 = NULL, smoother3 = "ns", arg3 = "df=2", smoother4 = "ns", arg4 = "df=3", excl1 = NULL, excl2 = NULL, excl3 = NULL, excl4 = NULL, extra = NULL, subset = xsubset(object), ... )
xp.scope3( object, covnam = xvardef("covariates", object), nmods = 3, smoother1 = 0, arg1 = NULL, smoother2 = 1, arg2 = NULL, smoother3 = "ns", arg3 = "df=2", smoother4 = "ns", arg4 = "df=3", excl1 = NULL, excl2 = NULL, excl3 = NULL, excl4 = NULL, extra = NULL, subset = xsubset(object), ... )
object |
An xpose.data object. |
covnam |
Covariate names to test. |
nmods |
Number of models to examine. |
smoother1 |
Smoother for each model. |
arg1 |
Argument for model 1. |
smoother2 |
Smoother for each model. |
arg2 |
Argument for model 2. |
smoother3 |
Smoother for each model. |
arg3 |
Argument for model 3. |
smoother4 |
Smoother for each model. |
arg4 |
Argument for model 4. |
excl1 |
Covariate exclusion from model 1. |
excl2 |
Covariate exclusion from model 2. |
excl3 |
Covariate exclusion from model 3. |
excl4 |
Covariate exclusion from model 4. |
extra |
Extra exclusion criteria. |
subset |
Subset on data. |
... |
Used to pass arguments to more basic functions. |
Other GAM functions:
GAM_summary_and_plot
,
xp.get.disp()
,
xpose.bootgam()
,
xpose.gam()
,
xpose4-package
xp.scope3(simpraz.xpdb)
xp.scope3(simpraz.xpdb)
Title
xpose.bootgam( object, n = n, id = object@Prefs@Xvardef$id, oid = "OID", seed = NULL, parnam = xvardef("parms", object)[1], covnams = xvardef("covariates", object), conv.value = object@[email protected]$conv.value, check.interval = as.numeric(object@[email protected]$check.interval), start.check = as.numeric(object@[email protected]$start.check), algo = object@[email protected]$algo, start.mod = object@[email protected]$start.mod, liif = as.numeric(object@[email protected]$liif), ljif.conv = as.numeric(object@[email protected]$ljif.conv), excluded.ids = as.numeric(object@[email protected]$excluded.ids), ... )
xpose.bootgam( object, n = n, id = object@Prefs@Xvardef$id, oid = "OID", seed = NULL, parnam = xvardef("parms", object)[1], covnams = xvardef("covariates", object), conv.value = object@Prefs@Bootgam.prefs$conv.value, check.interval = as.numeric(object@Prefs@Bootgam.prefs$check.interval), start.check = as.numeric(object@Prefs@Bootgam.prefs$start.check), algo = object@Prefs@Bootgam.prefs$algo, start.mod = object@Prefs@Bootgam.prefs$start.mod, liif = as.numeric(object@Prefs@Bootgam.prefs$liif), ljif.conv = as.numeric(object@Prefs@Bootgam.prefs$ljif.conv), excluded.ids = as.numeric(object@Prefs@Bootgam.prefs$excluded.ids), ... )
object |
An xpose.data object. |
n |
number of bootstrap iterations |
id |
column name of id |
oid |
create a new column with the original ID data |
seed |
random seed |
parnam |
ONE (and only one) model parameter name. |
covnams |
Covariate names to test on parameter. |
conv.value |
Convergence value |
check.interval |
How often to check the convergence |
start.check |
When to start checking |
algo |
Which algorithm to use |
start.mod |
which start model |
liif |
The liif value |
ljif.conv |
The convergence value for the liif |
excluded.ids |
ID values to exclude. |
... |
Used to pass arguments to more basic functions. |
a list of results from the bootstrap of the GAM.
Other GAM functions:
GAM_summary_and_plot
,
xp.get.disp()
,
xp.scope3()
,
xpose.gam()
,
xpose4-package
## Not run: ## filter out occasion as a covariate as only one value all_covs <- xvardef("covariates",simpraz.xpdb) some_covs <- all_covs[!(all_covs %in% "OCC") ] ## here only running n=5 replicates to see that things work ## use something like n=100 for resonable results boot_gam_obj <- xpose.bootgam(simpraz.xpdb,5,parnam="KA",covnams=some_covs,seed=1234) ## End(Not run)
## Not run: ## filter out occasion as a covariate as only one value all_covs <- xvardef("covariates",simpraz.xpdb) some_covs <- all_covs[!(all_covs %in% "OCC") ] ## here only running n=5 replicates to see that things work ## use something like n=100 for resonable results boot_gam_obj <- xpose.bootgam(simpraz.xpdb,5,parnam="KA",covnams=some_covs,seed=1234) ## End(Not run)
Creates an xpose.data
object.
xpose.data( runno, tab.suffix = "", sim.suffix = "sim", cwres.suffix = "", directory = ".", quiet = TRUE, table.names = c("sdtab", "mutab", "patab", "catab", "cotab", "mytab", "extra", "xptab", "cwtab"), cwres.name = c("cwtab"), mod.prefix = "run", mod.suffix = ".mod", phi.suffix = ".phi", phi.file = NULL, nm7 = NULL, ... )
xpose.data( runno, tab.suffix = "", sim.suffix = "sim", cwres.suffix = "", directory = ".", quiet = TRUE, table.names = c("sdtab", "mutab", "patab", "catab", "cotab", "mytab", "extra", "xptab", "cwtab"), cwres.name = c("cwtab"), mod.prefix = "run", mod.suffix = ".mod", phi.suffix = ".phi", phi.file = NULL, nm7 = NULL, ... )
runno |
Run number of the table files to read. |
tab.suffix |
Suffix to be appended to the table file names for the "real" data. |
sim.suffix |
Suffix to be appended to the table file names for any simulated data. |
cwres.suffix |
Suffix to be appended to the table file names for any CWRES data. |
directory |
Where the files are located. |
quiet |
A logical value indicating if more diagnostic messages should be printed when running this function. |
table.names |
Default text that Xpose looks for when searching for table files. |
cwres.name |
default text that xpose looks for when searching for CWRES table files. |
mod.prefix |
Start of model file name. |
mod.suffix |
End of model file name. |
phi.suffix |
End of .phi file name. |
phi.file |
The name of the .phi file. If not |
nm7 |
|
... |
Extra arguments passed to function. |
Xpose expects, by default, to find at least one the the following NONMEM tables in the working directory to be able to create an Xpose data object (using a run number of '5' as an example):
sdtab5: The 'standard' parameters, including IWRE, IPRE, TIME, and the NONMEM
default items (DV, PRED, RES and WRES) that are added when NOAPPEND is not
present in the $TABLE
record.
$TABLE ID TIME IPRE IWRE NOPRINT ONEHEADER FILE=sdtab5
patab5: The empirical Bayes estimates of individual model parameter values, or posthoc estimates. These are model parameters, such as CL, V2, ETA1, etc.
$TABLE ID CL V2 KA K F1 ETA1 ETA2 ETA3 NOPRINT NOAPPEND ONEHEADER
FILE=patab5
catab5: Categorical covariates, e.g. SEX, RACE.
$TABLE ID SEX HIV GRP NOPRINT NOAPPEND ONEHEADER FILE=catab5
cotab5: Continuous covariates, e.g. WT, AGE.
$TABLE ID WT AGE BSA HT GGT HB NOPRINT NOAPPEND ONEHEADER FILE=cotab5
mutab5, mytab5, extra5, xptab5: Additional variables of any kind. These might be useful if there are more covariates than can be accommodated in the covariates tables, for example, or if you have other variables that should be added, e.g. CMAX, AUC.
The default names for table files can be changed by changing the default values to the function. The files that Xpose looks for by default are:
paste(table.names, runno, tab.suffix, sep="")
The default CWRES table file name is called:
paste(cwres.name,runno,cwres.suffix,tab.suffix,sep="")
If there are simulation files present then Xpose looks for the files to be named:
paste(table.names, runno, sim.suffix, tab.suffix, sep="")
paste(cwres.name,runno,sim.suffix,cwres.suffix,tab.suffix,sep="")
This is basically a wrapper function for the read.nm.tables
,
Data
and SData
functions. See them for further information.
Also reads in the .phi file associated with the run (Individual OFVs, parameters, and variances of those parameters.)
An xpose.data
object. Default values for this object are
created from a file called 'xpose.ini'. This file can be found in the root
directory of the 'xpose4' package:
system.file("xpose.ini",package="xpose4")
.
It can be modified to fit the users wants and placed in the home folder of the user or the working directory, to override default settings.
Niclas Jonsson, Andrew Hooker
xpose.data-class
, Data
,
SData
, read.nm.tables
,
compute.cwres
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.print()
,
xpose4-package
,
xsubset()
# Here we create files from an example NONMEM run od = setwd(tempdir()) # move to a temp directory (cur.files <- dir()) # current files in temp directory simprazExample(overwrite=TRUE) # write files (new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here? xpdb <- xpose.data(1) file.remove(new.files) # remove these files setwd(od) # restore working directory ## Not run: # We expect to find the required NONMEM run and table files for run # 5 in the current working directory, and that the table files have # a suffix of '.dat', e.g. sdtab5.dat xpdb5 <- xpose.data(5, tab.suffix = ".dat") ## End(Not run)
# Here we create files from an example NONMEM run od = setwd(tempdir()) # move to a temp directory (cur.files <- dir()) # current files in temp directory simprazExample(overwrite=TRUE) # write files (new.files <- dir()[!(dir() %in% cur.files)]) # what files are new here? xpdb <- xpose.data(1) file.remove(new.files) # remove these files setwd(od) # restore working directory ## Not run: # We expect to find the required NONMEM run and table files for run # 5 in the current working directory, and that the table files have # a suffix of '.dat', e.g. sdtab5.dat xpdb5 <- xpose.data(5, tab.suffix = ".dat") ## End(Not run)
The xpose.data class is the fundamental data object in Xpose 4. It contains the data and preferences used in the creation of the Xpose plots and analyses.
Objects are most easily created by the
xpose.data
function, which reads the appropriate NONMEM table files
and populates the slots of the object.
Niclas Jonsson and Andrew Hooker
xpose.data
, Data
, SData
read.nm.tables
, xpose.prefs-class
Function takes an Xpose object and performs a generalized additive model (GAM) stepwise search for influential covariates on a single model parameter.
xpose.gam( object, parnam = xvardef("parms", object)[1], covnams = xvardef("covariates", object), trace = TRUE, scope = NULL, disp = object@[email protected]$disp, start.mod = object@[email protected]$start.mod, family = "gaussian", wts.data = [email protected], wts.col = NULL, steppit = object@[email protected]$steppit, subset = xsubset(object), onlyfirst = object@[email protected]$onlyfirst, medianNorm = object@[email protected]$medianNorm, nmods = object@[email protected]$nmods, smoother1 = object@[email protected]$smoother1, smoother2 = object@[email protected]$smoother2, smoother3 = object@[email protected]$smoother3, smoother4 = object@[email protected]$smoother4, arg1 = object@[email protected]$arg1, arg2 = object@[email protected]$arg2, arg3 = object@[email protected]$arg3, arg4 = object@[email protected]$arg4, excl1 = object@[email protected]$excl1, excl2 = object@[email protected]$excl2, excl3 = object@[email protected]$excl3, excl4 = object@[email protected]$excl4, extra = object@[email protected]$extra, ... )
xpose.gam( object, parnam = xvardef("parms", object)[1], covnams = xvardef("covariates", object), trace = TRUE, scope = NULL, disp = object@Prefs@Gam.prefs$disp, start.mod = object@Prefs@Gam.prefs$start.mod, family = "gaussian", wts.data = object@Data.firstonly, wts.col = NULL, steppit = object@Prefs@Gam.prefs$steppit, subset = xsubset(object), onlyfirst = object@Prefs@Gam.prefs$onlyfirst, medianNorm = object@Prefs@Gam.prefs$medianNorm, nmods = object@Prefs@Gam.prefs$nmods, smoother1 = object@Prefs@Gam.prefs$smoother1, smoother2 = object@Prefs@Gam.prefs$smoother2, smoother3 = object@Prefs@Gam.prefs$smoother3, smoother4 = object@Prefs@Gam.prefs$smoother4, arg1 = object@Prefs@Gam.prefs$arg1, arg2 = object@Prefs@Gam.prefs$arg2, arg3 = object@Prefs@Gam.prefs$arg3, arg4 = object@Prefs@Gam.prefs$arg4, excl1 = object@Prefs@Gam.prefs$excl1, excl2 = object@Prefs@Gam.prefs$excl2, excl3 = object@Prefs@Gam.prefs$excl3, excl4 = object@Prefs@Gam.prefs$excl4, extra = object@Prefs@Gam.prefs$extra, ... )
object |
An xpose.data object. |
parnam |
ONE (and only one) model parameter name. |
covnams |
Covariate names to test on parameter. |
trace |
TRUE if you want GAM output to screen. |
scope |
Scope of the GAM search. |
disp |
If dispersion should be used in the GAM object. |
start.mod |
Starting model. |
family |
Assumption for the parameter distribution. |
wts.data |
Weights on the least squares fitting of parameter vs.
covariate. Often one can use the variances of the individual parameter
values as weights. This data frame must have column with name ID and any
subset variable as well as the variable defined by the |
wts.col |
Which column in the |
steppit |
TRUE for stepwise search, false for no search. |
subset |
Subset on data. |
onlyfirst |
TRUE if only the first row of each individual's data is to be used. |
medianNorm |
Normalize to the median of parameter and covariates. |
nmods |
Number of models to examine. |
smoother1 |
Smoother for each model. |
smoother2 |
Smoother for each model. |
smoother3 |
Smoother for each model. |
smoother4 |
Smoother for each model. |
arg1 |
Argument for model 1. |
arg2 |
Argument for model 2. |
arg3 |
Argument for model 3. |
arg4 |
Argument for model 4. |
excl1 |
Covariate exclusion from model 1. |
excl2 |
Covariate exclusion from model 2. |
excl3 |
Covariate exclusion from model 3. |
excl4 |
Covariate exclusion from model 4. |
extra |
Extra exclusion criteria. |
... |
Used to pass arguments to more basic functions. |
Returned is a step.Gam
object. In this object
the step-wise-selected model is returned, with up to two additional
components. There is an "anova" component
corresponding to the steps taken in the search, as well as a
"keep" component if the "keep=" argument was supplied in the call.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
Other GAM functions:
GAM_summary_and_plot
,
xp.get.disp()
,
xp.scope3()
,
xpose.bootgam()
,
xpose4-package
## Run a GAM using the example xpose database gam_ka <- xpose.gam(simpraz.xpdb, parnam="KA") ## Summarize GAM xp.summary(gam_ka) ## GAM residuals of base model vs. covariates xp.plot(gam_ka) ## An Akaike plot of the results xp.akaike.plot(gam_ka) ## Studentized residuals xp.ind.stud.res(gam_ka) ## Individual influence on GAM fit xp.ind.inf.fit(gam_ka) ## Individual influence on GAM terms xp.ind.inf.terms(gam_ka) ## Individual parameters to GAM fit xp.cook(gam_ka)
## Run a GAM using the example xpose database gam_ka <- xpose.gam(simpraz.xpdb, parnam="KA") ## Summarize GAM xp.summary(gam_ka) ## GAM residuals of base model vs. covariates xp.plot(gam_ka) ## An Akaike plot of the results xp.akaike.plot(gam_ka) ## Studentized residuals xp.ind.stud.res(gam_ka) ## Individual influence on GAM fit xp.ind.inf.fit(gam_ka) ## Individual influence on GAM terms xp.ind.inf.terms(gam_ka) ## Individual parameters to GAM fit xp.cook(gam_ka)
This function displays a copy of Xpose's end user license agreement (EULA).
xpose.license.citation()
xpose.license.citation()
The EULA.
Andrew Hooker
xpose.license.citation()
xpose.license.citation()
The functions are used to create standard tic marks and axis labels when the axes are on the log scale.
xpose.logTicks(lim, loc = c(1, 5)) xpose.yscale.components.log10(lim, ...) xpose.xscale.components.log10(lim, ...)
xpose.logTicks(lim, loc = c(1, 5)) xpose.yscale.components.log10(lim, ...) xpose.xscale.components.log10(lim, ...)
lim |
Limits |
loc |
Locations |
... |
Additional arguments passed to the function. |
These functions create log scales that look like they should (not the
default R scales). These functions are used as input to the
xscale.components
argument in a lattice
plot.
xpose.logTicks()
: Make log tic marks
xpose.xscale.components.log10()
: Make log scale on x-axis
Andrew Hooker
xpose.plot.default
xscale.components
## Not run: xpdb5 <- xpose.data(5) xpose.plot.default("PRED","DV",xpdb,logy=T,logx=T) xpose.plot.default("PRED","DV",xpdb,logy=T,logx=T, yscale.components = xpose.yscale.components.log10, xscale.components = xpose.xscale.components.log10) ## both give the same result ## End(Not run)
## Not run: xpdb5 <- xpose.data(5) xpose.plot.default("PRED","DV",xpdb,logy=T,logx=T) xpose.plot.default("PRED","DV",xpdb,logy=T,logx=T, yscale.components = xpose.yscale.components.log10, xscale.components = xpose.xscale.components.log10) ## both give the same result ## End(Not run)
Create and object with class "xpose.multiple.plot".
xpose.multiple.plot( plotList, plotTitle = NULL, nm7 = TRUE, prompt = FALSE, new.first.window = FALSE, max.plots.per.page = 4, title = list(title.x = unit(0.5, "npc"), title.y = unit(0.5, "npc"), title.gp = gpar(cex = 1.2, fontface = "bold"), title.just = c("center", "center")), mirror = FALSE, bql.layout = FALSE, ... )
xpose.multiple.plot( plotList, plotTitle = NULL, nm7 = TRUE, prompt = FALSE, new.first.window = FALSE, max.plots.per.page = 4, title = list(title.x = unit(0.5, "npc"), title.y = unit(0.5, "npc"), title.gp = gpar(cex = 1.2, fontface = "bold"), title.just = c("center", "center")), mirror = FALSE, bql.layout = FALSE, ... )
plotList |
A list of lattice plots. |
plotTitle |
Main title for plots. |
nm7 |
|
prompt |
When printing should we prompt for each new page in plot? |
new.first.window |
|
max.plots.per.page |
A number. Max value is 9. |
title |
Title properties. |
mirror |
Are there mirror plots in plot list? |
bql.layout |
Should we use layout optimized for plots with BQL (below limit of quantification) measurements? |
... |
Additional options passed to function. |
An object of class "xpose.multiple.plot".
Niclas Jonsson and Andrew C. Hooker
print.xpose.multiple.plot
,
xpose.multiple.plot.default
Other generic functions:
gof()
,
xpose4-package
Class for creating multiple plots in xpose
plotList
A list of lattice plots
plotTitle
The plot title
prompt
Should prompts be used
new.first.window
Create a new first window?
max.plots.per.page
How many plots per page?
title
The title
mirror
Are there mirror plots to create
bql.layout
Should we use bql.layout
Function takes a list of lattice plot objects and prints them in a multiple plot layout with a title.
xpose.multiple.plot.default( plotList, plotTitle = NULL, prompt = FALSE, new.first.window = FALSE, max.plots.per.page = 4, title = list(title.x = unit(0.5, "npc"), title.y = unit(0.5, "npc"), title.gp = gpar(cex = 1.2, fontface = "bold"), title.just = c("center", "center")), mirror = FALSE, bql.layout = FALSE, page.numbers = TRUE, ... )
xpose.multiple.plot.default( plotList, plotTitle = NULL, prompt = FALSE, new.first.window = FALSE, max.plots.per.page = 4, title = list(title.x = unit(0.5, "npc"), title.y = unit(0.5, "npc"), title.gp = gpar(cex = 1.2, fontface = "bold"), title.just = c("center", "center")), mirror = FALSE, bql.layout = FALSE, page.numbers = TRUE, ... )
plotList |
A list of lattice plot objects such that plot object i can
be called with |
plotTitle |
The title used for the multiple plot layout |
prompt |
If more than one page is needed do you want a prompt at the command line before the next page is printed |
new.first.window |
Should the first page of this plot be in the already opened window or should a new window be created |
max.plots.per.page |
Maximum number of plots per page in the multiple layout |
title |
Look of title using grid. |
mirror |
if the list contains mirror plots |
bql.layout |
should we use layout optimized for BQL measurements? |
page.numbers |
Should we add page numbers to multiple page plots? |
... |
Other arguments passed to the code in this function |
Additional arguments:
Where the title should be placed in the title grid region
Where the title should be placed in the title grid region
how the title should be justified
The par parameters for the title (see grid)
returns nothing
Andrew Hooker
grid, basic.gof
, parm.vs.parm
,
parm.vs.cov
,
This is the box-and-whisker panel function for Xpose 4. This is not intended
to be used outside the xpose.plot.bw
function. Most of the arguments
take their default values from xpose.data object but this can be overridden
by supplying them as arguments to xpose.plot.bw
.
xpose.panel.bw( x, y, object, subscripts, groups = NULL, inclZeroWRES = FALSE, onlyfirst = FALSE, samp = NULL, xvarnam = NULL, yvarnam = NULL, type = object@[email protected]$type, col = object@[email protected]$col, pch = object@[email protected]$pch, cex = object@[email protected]$cex, lty = object@[email protected]$lty, fill = object@[email protected]$col, ids = NULL, idsmode = object@[email protected]$idsmode, idsext = object@[email protected]$idsext, idscex = object@[email protected]$idscex, idsdir = object@[email protected]$idsdir, bwhoriz = object@[email protected]$bwhoriz, bwratio = object@[email protected]$bwratio, bwvarwid = object@[email protected]$bwvarwid, bwdotpch = object@[email protected]$bwdotpch, bwdotcol = object@[email protected]$bwdotcol, bwdotcex = object@[email protected]$bwdotcex, bwreccol = object@[email protected]$bwreccol, bwrecfill = object@[email protected]$bwrecfill, bwreclty = object@[email protected]$bwreclty, bwreclwd = object@[email protected]$bwreclwd, bwumbcol = object@[email protected]$bwumbcol, bwumblty = object@[email protected]$bwumblty, bwumblwd = object@[email protected]$bwumblwd, bwoutcol = object@[email protected]$bwoutcol, bwoutcex = object@[email protected]$bwoutcex, bwoutpch = object@[email protected]$bwoutpch, grid = object@[email protected]$grid, logy = FALSE, logx = FALSE, force.x.continuous = TRUE, binvar = NULL, bins = 10, ... )
xpose.panel.bw( x, y, object, subscripts, groups = NULL, inclZeroWRES = FALSE, onlyfirst = FALSE, samp = NULL, xvarnam = NULL, yvarnam = NULL, type = object@Prefs@Graph.prefs$type, col = object@Prefs@Graph.prefs$col, pch = object@Prefs@Graph.prefs$pch, cex = object@Prefs@Graph.prefs$cex, lty = object@Prefs@Graph.prefs$lty, fill = object@Prefs@Graph.prefs$col, ids = NULL, idsmode = object@Prefs@Graph.prefs$idsmode, idsext = object@Prefs@Graph.prefs$idsext, idscex = object@Prefs@Graph.prefs$idscex, idsdir = object@Prefs@Graph.prefs$idsdir, bwhoriz = object@Prefs@Graph.prefs$bwhoriz, bwratio = object@Prefs@Graph.prefs$bwratio, bwvarwid = object@Prefs@Graph.prefs$bwvarwid, bwdotpch = object@Prefs@Graph.prefs$bwdotpch, bwdotcol = object@Prefs@Graph.prefs$bwdotcol, bwdotcex = object@Prefs@Graph.prefs$bwdotcex, bwreccol = object@Prefs@Graph.prefs$bwreccol, bwrecfill = object@Prefs@Graph.prefs$bwrecfill, bwreclty = object@Prefs@Graph.prefs$bwreclty, bwreclwd = object@Prefs@Graph.prefs$bwreclwd, bwumbcol = object@Prefs@Graph.prefs$bwumbcol, bwumblty = object@Prefs@Graph.prefs$bwumblty, bwumblwd = object@Prefs@Graph.prefs$bwumblwd, bwoutcol = object@Prefs@Graph.prefs$bwoutcol, bwoutcex = object@Prefs@Graph.prefs$bwoutcex, bwoutpch = object@Prefs@Graph.prefs$bwoutpch, grid = object@Prefs@Graph.prefs$grid, logy = FALSE, logx = FALSE, force.x.continuous = TRUE, binvar = NULL, bins = 10, ... )
x |
Name(s) of the x-variable. |
y |
Name(s) of the y-variable. |
object |
An xpose.data object. |
subscripts |
The standard Trellis subscripts argument (see
|
groups |
Name of the variable used for superpose plots. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. |
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
samp |
An integer between 1 and object@Nsim
(see |
xvarnam |
Character string with the name of the x-variable. |
yvarnam |
Character string with the name of the y-variable. |
type |
Character value indicating the type of display to use: "l"=lines, "p"=points, "b"=both points and lines. |
col |
Colour of lines and plot symbols. |
pch |
Plot character to use. |
cex |
Size of the plot characters. |
lty |
Line type. |
fill |
Fill colour. |
ids |
Character value with the name of the variable to label data points with. |
idsmode |
Determines the way text labels are added to plots.
|
idsext |
See |
idscex |
Size of text labels. |
idsdir |
A value of "both" (the default) means that both high and low
extreme points are labelled while "up" and "down" labels the high and low
extreme points respectively. See |
bwhoriz |
logical value indicating whether box and whiskers should be horizontal or not. The default is FALSE. |
bwratio |
Ratio of box height to inter-box space. The default is 1.5.
An argument for |
bwvarwid |
Logical. If TRUE, widths of boxplots are proportional to the
number of points used in creating it. The default is FALSE. An argument for
|
bwdotpch |
Graphical parameter controlling the dot plotting character
'bwdotpch="|"' is treated specially, by replacing the dot with a line. The
default is 16. An argument for |
bwdotcol |
Graphical parameter controlling the dot colour - an integer
or string. See 'col'. The default is black. An argument for
|
bwdotcex |
The amount by which plotting text and symbols should be
scaled relative to the default. 'NULL' and 'NA' are equivalent to '1.0'. An
argument for |
bwreccol |
The colour to use for the box rectangle - an integer or
string. The default is blue. See |
bwrecfill |
The colour to use for filling the box rectangle - an
integer or string. The default is transparent (none). See
|
bwreclty |
The line type for the box rectangle - an integer or string.
The default is solid. See |
bwreclwd |
The width of the lines for the box rectangle - an integer.
The default is 1. See |
bwumbcol |
The colour to use for the umbrellas - an integer or string.
The default is blue. See |
bwumblty |
The line type for the umbrellas - an integer or string. The
default is solid.See |
bwumblwd |
the width of the lines for the umbrellas - an integer. The
default is 1. See |
bwoutcol |
The colour to use for the outliers - an integer or string.
The default is blue. See |
bwoutcex |
The amount by which outlier points should be scaled relative
to the default. 'NULL' and 'NA' are equivalent to '1.0'. The default is 0.8.
See |
bwoutpch |
The plotting character, or symbol, to use for outlier
points. Specified as an integer. See R help on 'points'. The default is an
open circle. See |
grid |
logical value indicating whether a visual reference grid should be added to the graph. (Could use arguments for line type, color etc). |
logy |
Logical value indicating whether the y-axis should be logarithmic. |
logx |
Logical value indicating whether the x-axis should be logarithmic. |
force.x.continuous |
Logical value indicating whether x-values should be taken as continuous, even if categorical. |
binvar |
Variable to be used for binning. |
bins |
The number of bins to be used. The default is 10. |
... |
Other arguments that may be needed in the function. |
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.data-class
, Cross-references above.
This is the panel function for Xpose 4. This is not intended to be ised
outside the xpose.plot.default
function. Most of the arguments take
their default values from xpose.data object but this can be overridden by
supplying them as argument to xpose.plot.default
.
xpose.panel.default( x, y, object, subscripts, groups = object@Prefs@Xvardef$id, grp.col = NULL, iplot = NULL, inclZeroWRES = FALSE, onlyfirst = FALSE, samp = NULL, xvarnam = NULL, yvarnam = NULL, PI = NULL, PI.subset = NULL, PI.bin.table = NULL, PI.real = NULL, PI.mirror = NULL, PI.ci = NULL, PPI = NULL, PI.mean = FALSE, PI.delta.mean = FALSE, PI.x.median = TRUE, PI.rug = "Default", PI.rug.col = "orange", PI.rug.lwd = 3, PI.identify.outliers = TRUE, PI.outliers.col = "red", PI.outliers.pch = 8, PI.outliers.cex = 1, PI.limits = c(0.025, 0.975), PI.arcol = "lightgreen", PI.up.lty = 2, PI.up.type = "l", PI.up.col = "black", PI.up.lwd = 2, PI.down.lty = 2, PI.down.type = "l", PI.down.col = "black", PI.down.lwd = 2, PI.med.lty = 1, PI.med.type = "l", PI.med.col = "black", PI.med.lwd = 2, PI.mean.lty = 3, PI.mean.type = "l", PI.mean.col = "black", PI.mean.lwd = 2, PI.delta.mean.lty = 3, PI.delta.mean.type = "l", PI.delta.mean.col = "black", PI.delta.mean.lwd = 2, PI.real.up.lty = 2, PI.real.up.type = "l", PI.real.up.col = "red", PI.real.up.lwd = 2, PI.real.down.lty = 2, PI.real.down.type = "l", PI.real.down.col = "red", PI.real.down.lwd = 2, PI.real.med.lty = 1, PI.real.med.type = "l", PI.real.med.col = "red", PI.real.med.lwd = 2, PI.real.mean.lty = 3, PI.real.mean.type = "l", PI.real.mean.col = "red", PI.real.mean.lwd = 2, PI.real.delta.mean.lty = 3, PI.real.delta.mean.type = "l", PI.real.delta.mean.col = "red", PI.real.delta.mean.lwd = 2, PI.mirror.up.lty = 2, PI.mirror.up.type = "l", PI.mirror.up.col = "darkgreen", PI.mirror.up.lwd = 1, PI.mirror.down.lty = 2, PI.mirror.down.type = "l", PI.mirror.down.col = "darkgreen", PI.mirror.down.lwd = 1, PI.mirror.med.lty = 1, PI.mirror.med.type = "l", PI.mirror.med.col = "darkgreen", PI.mirror.med.lwd = 1, PI.mirror.mean.lty = 3, PI.mirror.mean.type = "l", PI.mirror.mean.col = "darkgreen", PI.mirror.mean.lwd = 1, PI.mirror.delta.mean.lty = 3, PI.mirror.delta.mean.type = "l", PI.mirror.delta.mean.col = "darkgreen", PI.mirror.delta.mean.lwd = 1, PI.ci.up.arcol = "blue", PI.ci.up.lty = 3, PI.ci.up.type = "l", PI.ci.up.col = "darkorange", PI.ci.up.lwd = 2, PI.ci.down.arcol = "blue", PI.ci.down.lty = 3, PI.ci.down.type = "l", PI.ci.down.col = "darkorange", PI.ci.down.lwd = 2, PI.ci.med.arcol = "red", PI.ci.med.lty = 4, PI.ci.med.type = "l", PI.ci.med.col = "darkorange", PI.ci.med.lwd = 2, PI.ci.mean.arcol = "purple", PI.ci.mean.lty = 4, PI.ci.mean.type = "l", PI.ci.mean.col = "darkorange", PI.ci.mean.lwd = 2, PI.ci.delta.mean.arcol = "purple", PI.ci.delta.mean.lty = 4, PI.ci.delta.mean.type = "l", PI.ci.delta.mean.col = "darkorange", PI.ci.delta.mean.lwd = 2, PI.ci.area.smooth = FALSE, type = object@[email protected]$type, col = object@[email protected]$col, pch = object@[email protected]$pch, cex = object@[email protected]$cex, lty = object@[email protected]$lty, lwd = object@[email protected]$lwd, fill = object@[email protected]$fill, ids = NULL, idsmode = object@[email protected]$idsmode, idsext = object@[email protected]$idsext, idscex = object@[email protected]$idscex, idsdir = object@[email protected]$idsdir, abline = object@[email protected]$abline, abllwd = object@[email protected]$abllwd, abllty = object@[email protected]$abllty, ablcol = object@[email protected]$ablcol, smooth = object@[email protected]$smooth, smlwd = object@[email protected]$smlwd, smlty = object@[email protected]$smlty, smcol = object@[email protected]$smcol, smspan = object@[email protected]$smspan, smdegr = object@[email protected]$smdegr, smooth.for.groups = NULL, lmline = object@[email protected]$lmline, lmlwd = object@[email protected]$lmlwd, lmlty = object@[email protected]$lmlty, lmcol = object@[email protected]$lmcol, suline = object@[email protected]$suline, sulwd = object@[email protected]$sulwd, sulty = object@[email protected]$sulty, sucol = object@[email protected]$sucol, suspan = object@[email protected]$suspan, sudegr = object@[email protected]$sudegr, grid = object@[email protected]$grid, logy = FALSE, logx = FALSE, force.x.continuous = FALSE, bwhoriz = object@[email protected]$bwhoriz, bwratio = object@[email protected]$bwratio, bwvarwid = object@[email protected]$bwvarwid, bwdotpch = object@[email protected]$bwdotpch, bwdotcol = object@[email protected]$bwdotcol, bwdotcex = object@[email protected]$bwdotcex, bwreccol = object@[email protected]$bwreccol, bwrecfill = object@[email protected]$bwrecfill, bwreclty = object@[email protected]$bwreclty, bwreclwd = object@[email protected]$bwreclwd, bwumbcol = object@[email protected]$bwumbcol, bwumblty = object@[email protected]$bwumblty, bwumblwd = object@[email protected]$bwumblwd, bwoutcol = object@[email protected]$bwoutcol, bwoutcex = object@[email protected]$bwoutcex, bwoutpch = object@[email protected]$bwoutpch, autocorr = FALSE, vline = NULL, vllwd = 3, vllty = 2, vlcol = "grey", hline = NULL, hllwd = 3, hllty = 1, hlcol = "grey", pch.ip.sp = pch, cex.ip.sp = cex, ... )
xpose.panel.default( x, y, object, subscripts, groups = object@Prefs@Xvardef$id, grp.col = NULL, iplot = NULL, inclZeroWRES = FALSE, onlyfirst = FALSE, samp = NULL, xvarnam = NULL, yvarnam = NULL, PI = NULL, PI.subset = NULL, PI.bin.table = NULL, PI.real = NULL, PI.mirror = NULL, PI.ci = NULL, PPI = NULL, PI.mean = FALSE, PI.delta.mean = FALSE, PI.x.median = TRUE, PI.rug = "Default", PI.rug.col = "orange", PI.rug.lwd = 3, PI.identify.outliers = TRUE, PI.outliers.col = "red", PI.outliers.pch = 8, PI.outliers.cex = 1, PI.limits = c(0.025, 0.975), PI.arcol = "lightgreen", PI.up.lty = 2, PI.up.type = "l", PI.up.col = "black", PI.up.lwd = 2, PI.down.lty = 2, PI.down.type = "l", PI.down.col = "black", PI.down.lwd = 2, PI.med.lty = 1, PI.med.type = "l", PI.med.col = "black", PI.med.lwd = 2, PI.mean.lty = 3, PI.mean.type = "l", PI.mean.col = "black", PI.mean.lwd = 2, PI.delta.mean.lty = 3, PI.delta.mean.type = "l", PI.delta.mean.col = "black", PI.delta.mean.lwd = 2, PI.real.up.lty = 2, PI.real.up.type = "l", PI.real.up.col = "red", PI.real.up.lwd = 2, PI.real.down.lty = 2, PI.real.down.type = "l", PI.real.down.col = "red", PI.real.down.lwd = 2, PI.real.med.lty = 1, PI.real.med.type = "l", PI.real.med.col = "red", PI.real.med.lwd = 2, PI.real.mean.lty = 3, PI.real.mean.type = "l", PI.real.mean.col = "red", PI.real.mean.lwd = 2, PI.real.delta.mean.lty = 3, PI.real.delta.mean.type = "l", PI.real.delta.mean.col = "red", PI.real.delta.mean.lwd = 2, PI.mirror.up.lty = 2, PI.mirror.up.type = "l", PI.mirror.up.col = "darkgreen", PI.mirror.up.lwd = 1, PI.mirror.down.lty = 2, PI.mirror.down.type = "l", PI.mirror.down.col = "darkgreen", PI.mirror.down.lwd = 1, PI.mirror.med.lty = 1, PI.mirror.med.type = "l", PI.mirror.med.col = "darkgreen", PI.mirror.med.lwd = 1, PI.mirror.mean.lty = 3, PI.mirror.mean.type = "l", PI.mirror.mean.col = "darkgreen", PI.mirror.mean.lwd = 1, PI.mirror.delta.mean.lty = 3, PI.mirror.delta.mean.type = "l", PI.mirror.delta.mean.col = "darkgreen", PI.mirror.delta.mean.lwd = 1, PI.ci.up.arcol = "blue", PI.ci.up.lty = 3, PI.ci.up.type = "l", PI.ci.up.col = "darkorange", PI.ci.up.lwd = 2, PI.ci.down.arcol = "blue", PI.ci.down.lty = 3, PI.ci.down.type = "l", PI.ci.down.col = "darkorange", PI.ci.down.lwd = 2, PI.ci.med.arcol = "red", PI.ci.med.lty = 4, PI.ci.med.type = "l", PI.ci.med.col = "darkorange", PI.ci.med.lwd = 2, PI.ci.mean.arcol = "purple", PI.ci.mean.lty = 4, PI.ci.mean.type = "l", PI.ci.mean.col = "darkorange", PI.ci.mean.lwd = 2, PI.ci.delta.mean.arcol = "purple", PI.ci.delta.mean.lty = 4, PI.ci.delta.mean.type = "l", PI.ci.delta.mean.col = "darkorange", PI.ci.delta.mean.lwd = 2, PI.ci.area.smooth = FALSE, type = object@Prefs@Graph.prefs$type, col = object@Prefs@Graph.prefs$col, pch = object@Prefs@Graph.prefs$pch, cex = object@Prefs@Graph.prefs$cex, lty = object@Prefs@Graph.prefs$lty, lwd = object@Prefs@Graph.prefs$lwd, fill = object@Prefs@Graph.prefs$fill, ids = NULL, idsmode = object@Prefs@Graph.prefs$idsmode, idsext = object@Prefs@Graph.prefs$idsext, idscex = object@Prefs@Graph.prefs$idscex, idsdir = object@Prefs@Graph.prefs$idsdir, abline = object@Prefs@Graph.prefs$abline, abllwd = object@Prefs@Graph.prefs$abllwd, abllty = object@Prefs@Graph.prefs$abllty, ablcol = object@Prefs@Graph.prefs$ablcol, smooth = object@Prefs@Graph.prefs$smooth, smlwd = object@Prefs@Graph.prefs$smlwd, smlty = object@Prefs@Graph.prefs$smlty, smcol = object@Prefs@Graph.prefs$smcol, smspan = object@Prefs@Graph.prefs$smspan, smdegr = object@Prefs@Graph.prefs$smdegr, smooth.for.groups = NULL, lmline = object@Prefs@Graph.prefs$lmline, lmlwd = object@Prefs@Graph.prefs$lmlwd, lmlty = object@Prefs@Graph.prefs$lmlty, lmcol = object@Prefs@Graph.prefs$lmcol, suline = object@Prefs@Graph.prefs$suline, sulwd = object@Prefs@Graph.prefs$sulwd, sulty = object@Prefs@Graph.prefs$sulty, sucol = object@Prefs@Graph.prefs$sucol, suspan = object@Prefs@Graph.prefs$suspan, sudegr = object@Prefs@Graph.prefs$sudegr, grid = object@Prefs@Graph.prefs$grid, logy = FALSE, logx = FALSE, force.x.continuous = FALSE, bwhoriz = object@Prefs@Graph.prefs$bwhoriz, bwratio = object@Prefs@Graph.prefs$bwratio, bwvarwid = object@Prefs@Graph.prefs$bwvarwid, bwdotpch = object@Prefs@Graph.prefs$bwdotpch, bwdotcol = object@Prefs@Graph.prefs$bwdotcol, bwdotcex = object@Prefs@Graph.prefs$bwdotcex, bwreccol = object@Prefs@Graph.prefs$bwreccol, bwrecfill = object@Prefs@Graph.prefs$bwrecfill, bwreclty = object@Prefs@Graph.prefs$bwreclty, bwreclwd = object@Prefs@Graph.prefs$bwreclwd, bwumbcol = object@Prefs@Graph.prefs$bwumbcol, bwumblty = object@Prefs@Graph.prefs$bwumblty, bwumblwd = object@Prefs@Graph.prefs$bwumblwd, bwoutcol = object@Prefs@Graph.prefs$bwoutcol, bwoutcex = object@Prefs@Graph.prefs$bwoutcex, bwoutpch = object@Prefs@Graph.prefs$bwoutpch, autocorr = FALSE, vline = NULL, vllwd = 3, vllty = 2, vlcol = "grey", hline = NULL, hllwd = 3, hllty = 1, hlcol = "grey", pch.ip.sp = pch, cex.ip.sp = cex, ... )
x |
Name(s) of the x-variable. |
y |
Name(s) of the y-variable. |
object |
An xpose.data object. |
subscripts |
The standard Trellis subscripts argument (see
|
groups |
Name of the variable used for superpose plots. |
grp.col |
Logical value indicating whether or not to use colour highlighting when groups are specified. NULL means no highlighting, while TRUE will identify group members by colour. |
iplot |
Is this an individual plots matrix? Internal use only. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. |
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
samp |
An integer between 1 and object@Nsim
(see |
xvarnam |
Character string with the name of the x-variable. |
yvarnam |
Character string with the name of the y-variable. |
PI |
Either "lines", "area" or "both" specifying whether prediction
intervals (as lines, as a shaded area or both) should be computed from the
data in |
PI.subset |
The subset to be used for the PI. |
PI.bin.table |
The table used to create VPC plots. Has a specific
format created by |
PI.real |
Plot the percentiles of the real data in the various bins. values can be NULL or TRUE. Note that for a bin with few actual observations the percentiles will be approximate. For example, the 95th percentile of 4 data points will always be the largest of the 4 data points. |
PI.mirror |
Plot the percentiles of one simulated data set in each bin.
values allowed are |
PI.ci |
Plot the prediction interval of the simulated data's
percentiles for each bin. Values can be |
PPI |
The plot prediction interval. Has a specific format that must be
followed. See |
PI.mean |
Should the mean be plotted in the VPCs? TRUE or FALSE. |
PI.delta.mean |
Should the delta mean be plotted in the VPCs? TRUE or FALSE. |
PI.x.median |
Should the x-location of percentile lines in a bin be
marked at the median of the x-values? ( |
PI.rug |
Should there be markings on the plot showing where the binning intervals for the VPC are (or the locations of the independent variable used for each VPC calculation if binning is not used)? |
PI.rug.col |
Color of the PI.rug. |
PI.rug.lwd |
Linw width of the PI.rug. |
PI.identify.outliers |
Should outlying percentiles of the real data be highlighted? (TRUE of FALSE) |
PI.outliers.col |
Color of PI.identify.outliers points |
PI.outliers.pch |
pch of PI.identify.outliers points |
PI.outliers.cex |
cex of PI.identify.outliers points |
PI.limits |
A vector of two values that describe the limits of the
prediction interval that should be displayed. For example |
PI.arcol |
The color of the |
PI.up.lty |
The upper line type. can be "dotted" or "dashed", etc. |
PI.up.type |
The upper type used for plotting. Defaults to a line. |
PI.up.col |
The upper line color |
PI.up.lwd |
The upper line width |
PI.down.lty |
The lower line type. can be "dotted" or "dashed", etc. |
PI.down.type |
The lower type used for plotting. Defaults to a line. |
PI.down.col |
The lower line color |
PI.down.lwd |
The lower line width |
PI.med.lty |
The median line type. can be "dotted" or "dashed", etc. |
PI.med.type |
The median type used for plotting. Defaults to a line. |
PI.med.col |
The median line color |
PI.med.lwd |
The median line width |
PI.mean.lty |
The mean line type. can be "dotted" or "dashed", etc. |
PI.mean.type |
The mean type used for plotting. Defaults to a line. |
PI.mean.col |
The mean line color |
PI.mean.lwd |
The mean line width |
PI.delta.mean.lty |
The delta.mean line type. can be "dotted" or "dashed", etc. |
PI.delta.mean.type |
The delta.mean type used for plotting. Defaults to a line. |
PI.delta.mean.col |
The delta.mean line color |
PI.delta.mean.lwd |
The delta.mean line width |
PI.real.up.lty |
The upper line type. can be "dotted" or "dashed", etc. |
PI.real.up.type |
The upper type used for plotting. Defaults to a line. |
PI.real.up.col |
The upper line color |
PI.real.up.lwd |
The upper line width |
PI.real.down.lty |
The lower line type. can be "dotted" or "dashed", etc. |
PI.real.down.type |
The lower type used for plotting. Defaults to a line. |
PI.real.down.col |
The lower line color |
PI.real.down.lwd |
The lower line width |
PI.real.med.lty |
The median line type. can be "dotted" or "dashed", etc. |
PI.real.med.type |
The median type used for plotting. Defaults to a line. |
PI.real.med.col |
The median line color |
PI.real.med.lwd |
The median line width |
PI.real.mean.lty |
The mean line type. can be "dotted" or "dashed", etc. |
PI.real.mean.type |
The mean type used for plotting. Defaults to a line. |
PI.real.mean.col |
The mean line color |
PI.real.mean.lwd |
The mean line width |
PI.real.delta.mean.lty |
The delta.mean line type. can be "dotted" or "dashed", etc. |
PI.real.delta.mean.type |
The delta.mean type used for plotting. Defaults to a line. |
PI.real.delta.mean.col |
The delta.mean line color |
PI.real.delta.mean.lwd |
The delta.mean line width |
PI.mirror.up.lty |
The upper line type. can be "dotted" or "dashed", etc. |
PI.mirror.up.type |
The upper type used for plotting. Defaults to a line. |
PI.mirror.up.col |
The upper line color |
PI.mirror.up.lwd |
The upper line width |
PI.mirror.down.lty |
The lower line type. can be "dotted" or "dashed", etc. |
PI.mirror.down.type |
The lower type used for plotting. Defaults to a line. |
PI.mirror.down.col |
The lower line color |
PI.mirror.down.lwd |
The lower line width |
PI.mirror.med.lty |
The median line type. can be "dotted" or "dashed", etc. |
PI.mirror.med.type |
The median type used for plotting. Defaults to a line. |
PI.mirror.med.col |
The median line color |
PI.mirror.med.lwd |
The median line width |
PI.mirror.mean.lty |
The mean line type. can be "dotted" or "dashed", etc. |
PI.mirror.mean.type |
The mean type used for plotting. Defaults to a line. |
PI.mirror.mean.col |
The mean line color |
PI.mirror.mean.lwd |
The mean line width |
PI.mirror.delta.mean.lty |
The delta.mean line type. can be "dotted" or "dashed", etc. |
PI.mirror.delta.mean.type |
The delta.mean type used for plotting. Defaults to a line. |
PI.mirror.delta.mean.col |
The delta.mean line color |
PI.mirror.delta.mean.lwd |
The delta.mean line width |
PI.ci.up.arcol |
The color of the upper |
PI.ci.up.lty |
The upper line type. can be "dotted" or "dashed", etc. |
PI.ci.up.type |
The upper type used for plotting. Defaults to a line. |
PI.ci.up.col |
The upper line color |
PI.ci.up.lwd |
The upper line width |
PI.ci.down.arcol |
The color of the lower |
PI.ci.down.lty |
The lower line type. can be "dotted" or "dashed", etc. |
PI.ci.down.type |
The lower type used for plotting. Defaults to a line. |
PI.ci.down.col |
The lower line color |
PI.ci.down.lwd |
The lower line width |
PI.ci.med.arcol |
The color of the median |
PI.ci.med.lty |
The median line type. can be "dotted" or "dashed", etc. |
PI.ci.med.type |
The median type used for plotting. Defaults to a line. |
PI.ci.med.col |
The median line color |
PI.ci.med.lwd |
The median line width |
PI.ci.mean.arcol |
The color of the mean |
PI.ci.mean.lty |
The mean line type. can be "dotted" or "dashed", etc. |
PI.ci.mean.type |
The mean type used for plotting. Defaults to a line. |
PI.ci.mean.col |
The mean line color |
PI.ci.mean.lwd |
The mean line width |
PI.ci.delta.mean.arcol |
The color of the delta.mean |
PI.ci.delta.mean.lty |
The delta.mean line type. can be "dotted" or "dashed", etc. |
PI.ci.delta.mean.type |
The delta.mean type used for plotting. Defaults to a line. |
PI.ci.delta.mean.col |
The delta.mean line color |
PI.ci.delta.mean.lwd |
The delta.mean line width |
PI.ci.area.smooth |
Should the "area" for |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
col |
The color for lines and points. Specified as an integer or a text
string. A full list is obtained by the R command |
pch |
The plotting character, or symbol, to use. Specified as an
integer. See R help on |
cex |
The amount by which plotting text and symbols should be scaled relative to the default. 'NULL' and 'NA' are equivalent to '1.0'. |
lty |
The line type. Line types can either be specified as an integer (0=blank, 1=solid, 2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the character strings '"blank"', '"solid"', '"dashed"', '"dotted"', '"dotdash"', '"longdash"', or '"twodash"', where '"blank"' uses 'invisible lines' (i.e., doesn't draw them). |
lwd |
the width for lines. Specified as an integer. The default is 1. |
fill |
fill for areas in plot |
ids |
Logical value specifying whether to label data points. |
idsmode |
Determines the way text labels are added to plots.
|
idsext |
specifies the extent of the extremes to be used in labelling points. The default is 0.05 (only the most extreme 5% of points are labelled). |
idscex |
the amount by which labels should be scaled relative to the default. 'NULL' and 'NA' are equivalent to '1.0'. |
idsdir |
a string indicating the directions of the extremes to include in labelling. Possible values are "up", "down" and "both". |
abline |
Vector of arguments to the |
abllwd |
Line width of any abline. |
abllty |
Line type of any abline. |
ablcol |
Line colour of any abline. |
smooth |
A |
smlwd |
Line width of the x-y smooth. |
smlty |
Line type of the x-y smooth. |
smcol |
Line color of the x-y smooth. |
smspan |
The smoothness parameter for the x-y smooth. The default is
0.667. An argument to |
smdegr |
The degree of the polynomials to be used for the x-y smooth,
up to 2. The default is 1. An argument to
|
smooth.for.groups |
Should a smooth for each group be drawn? |
lmline |
logical variable specifying whether a linear regression line
should be superimposed over an |
lmlwd |
Line width of the lmline. |
lmlty |
Line type of the lmline. |
lmcol |
Line colour of the lmline. |
suline |
A |
sulwd |
Line width of the superposed smooth. |
sulty |
Line type of the superposed smooth. |
sucol |
Line color of the superposed smooth. |
suspan |
The smoothness parameter. The default is 0.667. An argument to
|
sudegr |
The degree of the polynomials to be used, up to 2. The default
is 1. An argument to |
grid |
logical value indicating whether a visual reference grid should be added to the graph. (Could use arguments for line type, color etc). |
logy |
Logical value indicating whether the y-axis should be logarithmic. |
logx |
Logical value indicating whether the y-axis should be logarithmic. |
force.x.continuous |
Logical value indicating whether x-values should be taken as continuous, even if categorical. |
bwhoriz |
logical value indicating whether box and whiskers should be horizontal or not. The default is FALSE. |
bwratio |
Ratio of box height to inter-box space. The default is 1.5.
An argument for |
bwvarwid |
Logical. If TRUE, widths of boxplots are proportional to the
number of points used in creating it. The default is FALSE. An argument for
|
bwdotpch |
Graphical parameter controlling the dot plotting character
in boxplots. 'bwdotpch="|"' is treated specially, by replacing the dot with
a line. The default is 16. An argument for
|
bwdotcol |
Graphical parameter controlling the dot colour in boxplots -
an integer or string. See 'col'. The default is black. An argument for
|
bwdotcex |
The amount by which plotting text and symbols should be
scaled relative to the default in boxplots. 'NULL' and 'NA' are equivalent
to '1.0'. An argument for |
bwreccol |
The colour to use for the box rectangle in boxplots - an
integer or string. The default is blue. See
|
bwrecfill |
The colour to use for filling the box rectangle in boxplots
- an integer or string. The default is transparent (none). See
|
bwreclty |
The line type for the box rectangle in boxplots - an integer
or string. The default is solid. See |
bwreclwd |
The width of the lines for the box rectangle in boxplots -
an integer. The default is 1. See |
bwumbcol |
The colour to use for the umbrellas in boxplots - an integer
or string. The default is blue. See |
bwumblty |
The line type for the umbrellas in boxplots - an integer or
string. The default is solid.See |
bwumblwd |
the width of the lines for the umbrellas in boxplots - an
integer. The default is 1. See |
bwoutcol |
The colour to use for the outliers in boxplots - an integer
or string. The default is blue. See |
bwoutcex |
The amount by which outlier points should be scaled relative
to the default in boxplots. 'NULL' and 'NA' are equivalent to '1.0'. The
default is 0.8. See |
bwoutpch |
The plotting character, or symbol, to use for outlier points
in boxplots. Specified as an integer. See R help on 'points'. The default
is an open circle. See |
autocorr |
Is this an autocorrelation plot? Values can be
|
vline |
Add a vertical line to the plot at the values specified. |
vllwd |
Width (lwd) of vertical line |
vllty |
Line type (lty) for vertical line |
vlcol |
Color (col) of vertical line |
hline |
Add a horizontal line to the plot at the values specified. |
hllwd |
Width (lwd) of horizontal line |
hllty |
Line type (lty) for horizontal line |
hlcol |
Color (col) of horizontal line |
pch.ip.sp |
If there is a panel with just one observation then this specifies the type of points for the DV, IPRED and PRED respectively. |
cex.ip.sp |
If there is a panel with just one observation then this specifies the size of the points for the DV, IPRED and PRED respectively. |
... |
Other arguments that may be needed in the function. |
E. Niclas Jonsson, Mats Karlsson, Justin Wilkins and Andrew Hooker
xpose.data-class
, Cross-references above.
This is the histogram panel function for Xpose 4. This is not intended to be
ised outside the xpose.plot.histogram
function. Most of the arguments
take their default values from xpose.data object but this can be overridden
by supplying them as argument to xpose.plot.histogram
.
xpose.panel.histogram( x, object, breaks = NULL, dens = TRUE, hidlty = object@[email protected]$hidlty, hidcol = object@[email protected]$hidcol, hidlwd = object@[email protected]$hidlwd, hiborder = object@[email protected]$hiborder, hilty = object@[email protected]$hilty, hicol = object@[email protected]$hicol, hilwd = object@[email protected]$hilwd, math.dens = NULL, vline = NULL, vllwd = 3, vllty = 1, vlcol = "grey", hline = NULL, hllwd = 3, hllty = 1, hlcol = "grey", bins.per.panel.equal = TRUE, showMean = FALSE, meanllwd = 3, meanllty = 1, meanlcol = "orange", showMedian = FALSE, medianllwd = 3, medianllty = 1, medianlcol = "black", showPCTS = FALSE, PCTS = c(0.025, 0.975), PCTSllwd = 2, PCTSllty = hidlty, PCTSlcol = "black", vdline = NULL, vdllwd = 3, vdllty = 1, vdlcol = "red", ..., groups )
xpose.panel.histogram( x, object, breaks = NULL, dens = TRUE, hidlty = object@Prefs@Graph.prefs$hidlty, hidcol = object@Prefs@Graph.prefs$hidcol, hidlwd = object@Prefs@Graph.prefs$hidlwd, hiborder = object@Prefs@Graph.prefs$hiborder, hilty = object@Prefs@Graph.prefs$hilty, hicol = object@Prefs@Graph.prefs$hicol, hilwd = object@Prefs@Graph.prefs$hilwd, math.dens = NULL, vline = NULL, vllwd = 3, vllty = 1, vlcol = "grey", hline = NULL, hllwd = 3, hllty = 1, hlcol = "grey", bins.per.panel.equal = TRUE, showMean = FALSE, meanllwd = 3, meanllty = 1, meanlcol = "orange", showMedian = FALSE, medianllwd = 3, medianllty = 1, medianlcol = "black", showPCTS = FALSE, PCTS = c(0.025, 0.975), PCTSllwd = 2, PCTSllty = hidlty, PCTSlcol = "black", vdline = NULL, vdllwd = 3, vdllty = 1, vdlcol = "red", ..., groups )
x |
Name(s) of the x-variable. |
object |
An xpose.data object. |
breaks |
The breakpoints for the histogram. |
dens |
Density plot on top of histogram? |
hidlty |
Density line type. |
hidcol |
Color of density line. |
hidlwd |
Width of density line. |
hiborder |
Colour of the bar borders. |
hilty |
Line type for the bar borders. |
hicol |
Fill colour for the bars. |
hilwd |
Width for the bar borders. |
math.dens |
Should a density line be drawn. Values are |
vline |
|
vllwd |
Line width of the vertical lines defined with |
vllty |
Line type of the vertical lines defined with |
vlcol |
Line color of the vertical lines defined with |
hline |
|
hllwd |
Line width of the horizontal lines defined with |
hllty |
Line type of the horizontal lines defined with |
hlcol |
Line color of the horizontal lines defined with |
bins.per.panel.equal |
Allow for different bins in different panels for continuous data? TRUE or FALSE. |
showMean |
Should the mean of the data in the histogram be shown? |
meanllwd |
Line width of mean line. |
meanllty |
The line type for the mean |
meanlcol |
Color for the mean line |
showMedian |
Should the median of the data for the histogram be shown as a vertical line? |
medianllwd |
line width of median line. |
medianllty |
line type of median line. |
medianlcol |
color of median line. |
showPCTS |
Should percentiles of the data for the histogram be shown? |
PCTS |
A vector of percentiles to show. Can be any length. |
PCTSllwd |
line width of percentiles. Can be a vector of same length
as |
PCTSllty |
Line type of the percentiles. Can be a vector of same
length as |
PCTSlcol |
Color of the percentiles. Can be a vector of same length as
|
vdline |
vertical line different for each histogram. Must be a vector. |
vdllwd |
line widths |
vdllty |
line types |
vdlcol |
line colors |
... |
Other arguments that may be needed in the function. |
groups |
used to pass the conditioning variable into this function. |
Andrew Hooker, Mats Karlsson, Justin Wilkins & E. Niclas Jonsson
xpose.data-class
, Cross-references above.
This is the QQ panel function for Xpose 4. This is not intended to be used
outside the xpose.plot.qq
function. Most of the arguments take their
default values from xpose.data object but this can be overridden by
supplying them as argument to xpose.plot.qq
.
xpose.panel.qq( x, object, pch = object@[email protected]$pch, col = object@[email protected]$col, cex = object@[email protected]$cex, abllty = object@[email protected]$abllty, abllwd = object@[email protected]$abllwd, ablcol = object@[email protected]$ablcol, grid = object@[email protected]$grid, ... )
xpose.panel.qq( x, object, pch = object@Prefs@Graph.prefs$pch, col = object@Prefs@Graph.prefs$col, cex = object@Prefs@Graph.prefs$cex, abllty = object@Prefs@Graph.prefs$abllty, abllwd = object@Prefs@Graph.prefs$abllwd, ablcol = object@Prefs@Graph.prefs$ablcol, grid = object@Prefs@Graph.prefs$grid, ... )
x |
Name(s) of the x-variable. |
object |
An xpose.data object. |
pch |
Plot character to use. |
col |
Colour of lines and plot symbols. |
cex |
Amount to scale the plotting character by. |
abllty |
Line type. |
abllwd |
Line width. |
ablcol |
Line colour. |
grid |
logical value indicating whether a visual reference grid should be added to the graph. (Could use arguments for line type, color etc). |
... |
Other arguments that may be needed in the function. |
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.qq
, qqmath
,
panel.qqmathline
, xpose.data-class
This is the scatterplot matrix panel function for Xpose 4. This is not
intended to be ised outside the xpose.plot.splom
function. Most of
the arguments take their default values from xpose.data object but this can
be overridden by supplying them as argument to xpose.plot.splom
.
xpose.panel.splom( x, y, object, subscripts, onlyfirst = TRUE, inclZeroWRES = FALSE, type = "p", col = object@[email protected]$col, pch = object@[email protected]$pch, cex = object@[email protected]$cex, lty = object@[email protected]$lty, lwd = object@[email protected]$lwd, smooth = TRUE, smlwd = object@[email protected]$smlwd, smlty = object@[email protected]$smlty, smcol = object@[email protected]$smcol, smspan = object@[email protected]$smspan, smdegr = object@[email protected]$smdegr, lmline = NULL, lmlwd = object@[email protected]$lmlwd, lmlty = object@[email protected]$lmlty, lmcol = object@[email protected]$lmcol, grid = object@[email protected]$grid, groups = NULL, ... )
xpose.panel.splom( x, y, object, subscripts, onlyfirst = TRUE, inclZeroWRES = FALSE, type = "p", col = object@Prefs@Graph.prefs$col, pch = object@Prefs@Graph.prefs$pch, cex = object@Prefs@Graph.prefs$cex, lty = object@Prefs@Graph.prefs$lty, lwd = object@Prefs@Graph.prefs$lwd, smooth = TRUE, smlwd = object@Prefs@Graph.prefs$smlwd, smlty = object@Prefs@Graph.prefs$smlty, smcol = object@Prefs@Graph.prefs$smcol, smspan = object@Prefs@Graph.prefs$smspan, smdegr = object@Prefs@Graph.prefs$smdegr, lmline = NULL, lmlwd = object@Prefs@Graph.prefs$lmlwd, lmlty = object@Prefs@Graph.prefs$lmlty, lmcol = object@Prefs@Graph.prefs$lmcol, grid = object@Prefs@Graph.prefs$grid, groups = NULL, ... )
x |
Name(s) of the x-variable. |
y |
Name(s) of the y-variable. |
object |
An xpose.data object. |
subscripts |
The standard Trellis subscripts argument (see
|
onlyfirst |
Logical value indicating whether only the first row per individual is included in the plot. |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. |
type |
1-character string giving the type of plot desired. The following values are possible, for details, see 'plot': '"p"' for points, '"l"' for lines, '"o"' for over-plotted points and lines, '"b"', '"c"') for (empty if '"c"') points joined by lines, '"s"' and '"S"' for stair steps and '"h"' for histogram-like vertical lines. Finally, '"n"' does not produce any points or lines. |
col |
The color for lines and points. Specified as an integer or a text
string. A full list is obtained by the R command |
pch |
The plotting character, or symbol, to use. Specified as an
integer. See R help on |
cex |
The amount by which plotting text and symbols should be scaled relative to the default. 'NULL' and 'NA' are equivalent to '1.0'. |
lty |
The line type. Line types can either be specified as an integer (0=blank, 1=solid, 2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the character strings '"blank"', '"solid"', '"dashed"', '"dotted"', '"dotdash"', '"longdash"', or '"twodash"', where '"blank"' uses 'invisible lines' (i.e., doesn't draw them). |
lwd |
the width for lines. Specified as an integer. The default is 1. |
smooth |
A |
smlwd |
Line width of the x-y smooth. |
smlty |
Line type of the x-y smooth. |
smcol |
Line color of the x-y smooth. |
smspan |
The smoothness parameter for the x-y smooth. The default is
0.667. An argument to |
smdegr |
The degree of the polynomials to be used for the x-y smooth,
up to 2. The default is 1. An argument to
|
lmline |
logical variable specifying whether a linear regression line
should be superimposed over an |
lmlwd |
Line width of the lmline. |
lmlty |
Line type of the lmline. |
lmcol |
Line colour of the lmline. |
grid |
logical value indicating whether a visual reference grid should be added to the graph. (Could use arguments for line type, color etc). |
groups |
Name of the variable used for superpose plots. |
... |
Other arguments that may be needed in the function. |
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.plot.splom
, xpose.data-class
,
xyplot
splom
,
panel.splom
, panel.pairs
This is a wrapper function for the lattice bwplot
function.
xpose.plot.bw( x, y, object, inclZeroWRES = FALSE, onlyfirst = FALSE, samp = NULL, panel = xpose.panel.bw, groups = NULL, ids = FALSE, logy = FALSE, logx = FALSE, aspect = object@[email protected]$aspect, funy = NULL, funx = NULL, PI = FALSE, by = object@[email protected]$condvar, force.by.factor = FALSE, ordby = object@[email protected]$ordby, byordfun = object@[email protected]$byordfun, shingnum = object@[email protected]$shingnum, shingol = object@[email protected]$shingol, strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)), subset = xsubset(object), main = xpose.create.title(x, y, object, subset, funx, funy, ...), xlb = xpose.create.label(x, object, funx, logx, ...), ylb = xpose.create.label(y, object, funy, logy, ...), scales = list(), suline = object@[email protected]$suline, binvar = NULL, bins = 10, mirror = FALSE, max.plots.per.page = 4, mirror.aspect = "fill", pass.plot.list = FALSE, x.cex = NULL, y.cex = NULL, main.cex = NULL, mirror.internal = list(strip.missing = missing(strip)), ... )
xpose.plot.bw( x, y, object, inclZeroWRES = FALSE, onlyfirst = FALSE, samp = NULL, panel = xpose.panel.bw, groups = NULL, ids = FALSE, logy = FALSE, logx = FALSE, aspect = object@Prefs@Graph.prefs$aspect, funy = NULL, funx = NULL, PI = FALSE, by = object@Prefs@Graph.prefs$condvar, force.by.factor = FALSE, ordby = object@Prefs@Graph.prefs$ordby, byordfun = object@Prefs@Graph.prefs$byordfun, shingnum = object@Prefs@Graph.prefs$shingnum, shingol = object@Prefs@Graph.prefs$shingol, strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)), subset = xsubset(object), main = xpose.create.title(x, y, object, subset, funx, funy, ...), xlb = xpose.create.label(x, object, funx, logx, ...), ylb = xpose.create.label(y, object, funy, logy, ...), scales = list(), suline = object@Prefs@Graph.prefs$suline, binvar = NULL, bins = 10, mirror = FALSE, max.plots.per.page = 4, mirror.aspect = "fill", pass.plot.list = FALSE, x.cex = NULL, y.cex = NULL, main.cex = NULL, mirror.internal = list(strip.missing = missing(strip)), ... )
x |
Name(s) of the x-variable. |
y |
Name(s) of the y-variable. |
object |
An xpose.data object. |
inclZeroWRES |
A logical value indicating whether rows with WRES=0 should be plotted. |
onlyfirst |
A logical value indicating whether only the first row per individual should be included in the plot. |
samp |
An integer between 1 and object@Nsim
(see |
panel |
The name of the panel function to use. This should in most
cases be left as |
groups |
A string with the name of any grouping variable (used as the
groups argument to |
ids |
A logical value indicating whether text labels should be used as
plotting symbols (the variable used for these symbols indicated by the
|
logy |
Logical value indicating whether the y-axis should be logarithmic. |
logx |
Logical value indicating whether the x-axis should be logarithmic. |
aspect |
The aspect ratio of the display (see
|
funy |
String with the name of a function to apply to the y-variable before plotting, e.g. "abs". |
funx |
String with the name of a function to apply to the x-variable before plotting, e.g. "abs". |
PI |
Either "lines", "area" or "both" specifying whether prediction
intervals (as lines, as a shaded area or both) should be computed from the
data in |
by |
A string or a vector of strings with the name(s) of the conditioning variables. |
force.by.factor |
Logical value. If TRUE, and |
ordby |
A string with the name of a variable to be used to reorder any
factor conditioning variables ( |
byordfun |
The name of the function to be used when reordering a factor
conditioning variable (see argument |
shingnum |
The number of shingles ("parts") a continuous conditioning variable should be divided into. |
shingol |
The amount of overlap between adjacent shingles (see argument
|
strip |
The name of the function to be used as the strip argument to
the |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
main |
A string giving the plot title or |
xlb |
A string giving the label for the x-axis. |
ylb |
A string giving the label for the y-axis. |
scales |
A list to be used for the |
suline |
A string giving the variable to be used to construct a smooth
to superpose on the display. |
binvar |
Variable to be used for binning. |
bins |
The number of bins to be used. The default is 10. |
mirror |
Should we create mirror plots from simulation data? Value can
be |
max.plots.per.page |
The maximum number of plots per page that can be created with the mirror plots. |
mirror.aspect |
The aspect ratio of the plots used for mirror functionality. |
pass.plot.list |
Should we pass the list of plots created with mirror
or should we print them directly. Values can be |
x.cex |
The size of the x-axis label. |
y.cex |
The size of the y-axis label. |
main.cex |
The size of the title. |
mirror.internal |
an internal mirror argument used in
|
... |
Other arguments passed to |
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.data-class
, Cross-references above.
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Box & whisker plot of WRES vs PRED xpose.plot.bw("WRES", "PRED", xpdb5, binvar="PRED") ## End(Not run)
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## Box & whisker plot of WRES vs PRED xpose.plot.bw("WRES", "PRED", xpdb5, binvar="PRED") ## End(Not run)
This function is a wrapper for the lattice xyplot function.
xpose.plot.default( x, y, object, inclZeroWRES = FALSE, onlyfirst = FALSE, samp = NULL, panel = xpose.panel.default, groups = object@Prefs@Xvardef$id, ids = object@[email protected]$ids, logy = FALSE, logx = FALSE, yscale.components = "default", xscale.components = "default", aspect = object@[email protected]$aspect, funx = NULL, funy = NULL, iplot = NULL, PI = NULL, by = object@[email protected]$condvar, force.by.factor = FALSE, ordby = object@[email protected]$ordby, byordfun = object@[email protected]$byordfun, shingnum = object@[email protected]$shingnum, shingol = object@[email protected]$shingol, by.interval = NULL, strip = function(...) { strip.default(..., strip.names = c(TRUE, TRUE)) }, use.xpose.factor.strip.names = TRUE, subset = xsubset(object), autocorr = FALSE, main = xpose.create.title(x, y, object, subset, funx, funy, ...), xlb = xpose.create.label(x, object, funx, logx, autocorr.x = autocorr, ...), ylb = xpose.create.label(y, object, funy, logy, autocorr.y = autocorr, ...), scales = list(), suline = object@[email protected]$suline, bwhoriz = object@[email protected]$bwhoriz, dilution = FALSE, dilfrac = object@[email protected]$dilfrac, diltype = object@[email protected]$diltype, dilci = object@[email protected]$dilci, seed = NULL, mirror = FALSE, max.plots.per.page = 4, mirror.aspect = "fill", pass.plot.list = FALSE, x.cex = NULL, y.cex = NULL, main.cex = NULL, mirror.internal = list(strip.missing = missing(strip)), ... )
xpose.plot.default( x, y, object, inclZeroWRES = FALSE, onlyfirst = FALSE, samp = NULL, panel = xpose.panel.default, groups = object@Prefs@Xvardef$id, ids = object@Prefs@Graph.prefs$ids, logy = FALSE, logx = FALSE, yscale.components = "default", xscale.components = "default", aspect = object@Prefs@Graph.prefs$aspect, funx = NULL, funy = NULL, iplot = NULL, PI = NULL, by = object@Prefs@Graph.prefs$condvar, force.by.factor = FALSE, ordby = object@Prefs@Graph.prefs$ordby, byordfun = object@Prefs@Graph.prefs$byordfun, shingnum = object@Prefs@Graph.prefs$shingnum, shingol = object@Prefs@Graph.prefs$shingol, by.interval = NULL, strip = function(...) { strip.default(..., strip.names = c(TRUE, TRUE)) }, use.xpose.factor.strip.names = TRUE, subset = xsubset(object), autocorr = FALSE, main = xpose.create.title(x, y, object, subset, funx, funy, ...), xlb = xpose.create.label(x, object, funx, logx, autocorr.x = autocorr, ...), ylb = xpose.create.label(y, object, funy, logy, autocorr.y = autocorr, ...), scales = list(), suline = object@Prefs@Graph.prefs$suline, bwhoriz = object@Prefs@Graph.prefs$bwhoriz, dilution = FALSE, dilfrac = object@Prefs@Graph.prefs$dilfrac, diltype = object@Prefs@Graph.prefs$diltype, dilci = object@Prefs@Graph.prefs$dilci, seed = NULL, mirror = FALSE, max.plots.per.page = 4, mirror.aspect = "fill", pass.plot.list = FALSE, x.cex = NULL, y.cex = NULL, main.cex = NULL, mirror.internal = list(strip.missing = missing(strip)), ... )
x |
A string or a vector of strings with the name(s) of the x-variable(s). |
y |
A string or a vector of strings with the name(s) of the y-variable(s). |
object |
An "xpose.data" object. |
inclZeroWRES |
A logical value indicating whether rows with WRES=0 should be plotted. |
onlyfirst |
A logical value indicating whether only the first row per individual should be included in the plot. |
samp |
An integer between 1 and object@Nsim
(see |
panel |
The name of the panel function to use. |
groups |
A string with the name of any grouping variable (used as the
groups argument to |
ids |
A logical value indicating whether text labels should be used as
plotting symbols (the variable used for these symbols indicated by the
|
logy |
Logical value indicating whether the y-axis should be logarithmic. |
logx |
Logical value indicating whether the x-axis should be logarithmic. |
yscale.components |
Used to change the way the axis look if |
xscale.components |
Used to change the way the axis look if |
aspect |
The aspect ratio of the display (see
|
funx |
String with the name of a function to apply to the x-variable before plotting, e.g. "abs". |
funy |
String with the name of a function to apply to the y-variable before plotting, e.g. "abs". |
iplot |
Is this an individual plots matrix? Internal use only. |
PI |
Either "lines", "area" or "both" specifying whether prediction
intervals (as lines, as a shaded area or both) should be computed from the
data in |
by |
A string or a vector of strings with the name(s) of the conditioning variables. |
force.by.factor |
Logical value. If TRUE, and |
ordby |
A string with the name of a variable to be used to reorder any
factor conditioning variables ( |
byordfun |
The name of the function to be used when reordering a factor
conditioning variable (see argument |
shingnum |
The number of shingles ("parts") a continuous conditioning variable should be divided into. |
shingol |
The amount of overlap between adjacent shingles (see argument
|
by.interval |
The intervals to use for conditioning on a continuous
variable with |
strip |
The name of the function to be used as the strip argument to
the |
use.xpose.factor.strip.names |
Use factor names in strips of conditioning plots.. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
autocorr |
Is this an autocorrelation plot? Values can be
|
main |
A string giving the plot title or |
xlb |
A string giving the label for the x-axis. |
ylb |
A string giving the label for the y-axis. |
scales |
A list to be used for the |
suline |
A string giving the variable to be used to construct a smooth
to superpose on the display. |
bwhoriz |
A logical value indicating if box and whiskers bars should be plotted horizontally or not. Used when the x-variable(s) is categorical. |
dilution |
Logical value indicating whether data dilution should be used. |
dilfrac |
Dilution fraction indicating the expected fraction of individuals to display in the plots. The exact meaning depends on the type of dilution (see below). |
diltype |
Indicating what type of dilution to apply. |
dilci |
A number between 0 and 1 giving the range eligible for dilution in a stratified dilution (see below). |
seed |
Seed number used for random dilution. |
mirror |
Should we create mirror plots from simulation data? Value can
be |
max.plots.per.page |
The maximum number of plots per page that can be created with the mirror plots. |
mirror.aspect |
The aspect ratio of the plots used for mirror functionality. |
pass.plot.list |
Should we pass the list of plots created with mirror
or should we print them directly. Values can be |
x.cex |
The size of the x-axis label. |
y.cex |
The size of the y-axis label. |
main.cex |
The size of the title. |
mirror.internal |
an internal mirror argument used in
|
... |
Other arguments passed to |
y
must be numeric (continuous) while x
can be either numeric
of factor. If x
is numeric then a regular xy-plot is drawn. If x is a
factor, on the other hand, a box and whiskers plot is constructed.
x
and y
can be either single valued strings or vector of
strings. x
and y
can not both be vectors in the same call to
the function.
If ids
is TRUE
, text labels are added to the plotting symbols.
The labels are taken from the idlab
xpose data variable. The way the
text labels are plotted is governed by the idsmode
argument (passed
down to the panel function). idsmode=NULL
(the default) means that
only extreme data points are labelled while a non-NULL
value adds
labels to all data points (the default in Xpose 3).
xpose.panel.default
identifies extreme data points by fitting a loess
smooth (y~x
) and looking at the residuals from that fit. Points that
are associated with the highest/lowest residuals are labelled. "High" and
"low" are judged by the panel function parameter idsext
, which gives
the fraction of the total number of data points that are to be judged
extreme in the "up" and "down" direction. The default value for
idsext
is 0.05 (see xpose.prefs-class
). There is also a
possibility to label only the high or low extreme points. This is done
through the idsdir
argument to xpose.panel.default
. A value of
"both" (the default) means that both high and low extreme points are
labelled while "up" and "down" labels the high and low extreme points
respectively.
Data dilution is useful is situations when there is an excessive amount of
data. xpose.plot.default
can dilute data in two different ways. The
first is a completely random dilution in which all individuals are eligible
for exclusion from the plot. In this case the argument dilfrac
determines the fraction of individuals that are excluded from the plot. The
second type of dilution uses stratification to make sure that none of the
extreme individuals are omitted from the plot. Extreme individuals are
identified in a similar manner as extreme data points are identified for
text labelling. A smooth is fitted to the data and the extreme residuals
from that fit is used to inform about extremeness. What is judged as extreme
is determined by the argument dilci
, which defaults to 0.95 (Note
that the meaning of this is the opposite to idsext
). dilci
give the confidence level of the interval around the fitted curve outside of
which points are deemed to be extreme. Extreme individuals are those that
have at least one point in the "extremeness" interval. Individuals that do
not have any extreme points are eligible for dilution and dilfrac
give the number of these that should be omitted from the graph. This means
that dilfrac
should usually be grater for stratified dilution than in
completely random dilution. Any smooths added to a diluted plot is based on
undiluted data.
More graphical parameters may be passed to
xpose.panel.default
.
Returns a xyplot graph object.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.panel.default
, xyplot
,
panel.xyplot
, xpose.prefs-class
,
xpose.data-class
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## A spaghetti plot of DV vs TIME xpose.plot.default("TIME", "DV", xpdb5) ## A conditioning plot xpose.plot.default("TIME", "DV", xpdb5, by = "SEX") ## Multiple x-variables xpose.plot.default(c("WT", "SEX"), "CL", xpdb5) ## Multiple y-variables xpose.plot.default("WT", c("CL", "V"), xpdb5) xpose.plot.default("WT", c("CL", "V"), xpdb5, by=c("SEX", "HCTZ")) ## determining the interval for the conditioning variable wt.ints <- matrix(c(50,60,60,70,70,80,80,90,90,100,100,150),nrow=6,ncol=2,byrow=T) xpose.plot.default("TIME","DV",xpdb5,by="WT", by.interval=wt.ints) ## End(Not run)
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## A spaghetti plot of DV vs TIME xpose.plot.default("TIME", "DV", xpdb5) ## A conditioning plot xpose.plot.default("TIME", "DV", xpdb5, by = "SEX") ## Multiple x-variables xpose.plot.default(c("WT", "SEX"), "CL", xpdb5) ## Multiple y-variables xpose.plot.default("WT", c("CL", "V"), xpdb5) xpose.plot.default("WT", c("CL", "V"), xpdb5, by=c("SEX", "HCTZ")) ## determining the interval for the conditioning variable wt.ints <- matrix(c(50,60,60,70,70,80,80,90,90,100,100,150),nrow=6,ncol=2,byrow=T) xpose.plot.default("TIME","DV",xpdb5,by="WT", by.interval=wt.ints) ## End(Not run)
This function is a wrapper for the lattice xyplot function.
xpose.plot.histogram( x, object, inclZeroWRES = FALSE, onlyfirst = FALSE, samp = NULL, type = "density", aspect = object@[email protected]$aspect, scales = list(), by = object@[email protected]$condvar, force.by.factor = FALSE, ordby = object@[email protected]$ordby, byordfun = object@[email protected]$byordfun, shingnum = object@[email protected]$shingnum, shingol = object@[email protected]$shingol, strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)), subset = xsubset(object), main = xpose.create.title.hist(x, object, subset, ...), xlb = NULL, ylb = "Density", hicol = object@[email protected]$hicol, hilty = object@[email protected]$hilty, hilwd = object@[email protected]$hilwd, hidcol = object@[email protected]$hidcol, hidlty = object@[email protected]$hidlty, hidlwd = object@[email protected]$hidlwd, hiborder = object@[email protected]$hiborder, mirror = FALSE, max.plots.per.page = 4, mirror.aspect = "fill", pass.plot.list = FALSE, x.cex = NULL, y.cex = NULL, main.cex = NULL, mirror.internal = list(strip.missing = missing(strip)), ... )
xpose.plot.histogram( x, object, inclZeroWRES = FALSE, onlyfirst = FALSE, samp = NULL, type = "density", aspect = object@Prefs@Graph.prefs$aspect, scales = list(), by = object@Prefs@Graph.prefs$condvar, force.by.factor = FALSE, ordby = object@Prefs@Graph.prefs$ordby, byordfun = object@Prefs@Graph.prefs$byordfun, shingnum = object@Prefs@Graph.prefs$shingnum, shingol = object@Prefs@Graph.prefs$shingol, strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)), subset = xsubset(object), main = xpose.create.title.hist(x, object, subset, ...), xlb = NULL, ylb = "Density", hicol = object@Prefs@Graph.prefs$hicol, hilty = object@Prefs@Graph.prefs$hilty, hilwd = object@Prefs@Graph.prefs$hilwd, hidcol = object@Prefs@Graph.prefs$hidcol, hidlty = object@Prefs@Graph.prefs$hidlty, hidlwd = object@Prefs@Graph.prefs$hidlwd, hiborder = object@Prefs@Graph.prefs$hiborder, mirror = FALSE, max.plots.per.page = 4, mirror.aspect = "fill", pass.plot.list = FALSE, x.cex = NULL, y.cex = NULL, main.cex = NULL, mirror.internal = list(strip.missing = missing(strip)), ... )
x |
A string or a vector of strings with the name(s) of the x-variable(s). |
object |
An "xpose.data" object. |
inclZeroWRES |
A logical value indicating whether rows with WRES=0 should be plotted. |
onlyfirst |
A logical value indicating whether only the first row per individual should be included in the plot. |
samp |
An integer between 1 and object@Nsim
(see |
type |
The type of histogram to make. See
|
aspect |
The aspect ratio of the display (see
|
scales |
A list to be used for the |
by |
A string or a vector of strings with the name(s) of the conditioning variables. |
force.by.factor |
Logical value. If TRUE, and |
ordby |
A string with the name of a variable to be used to reorder any
factor conditioning variables ( |
byordfun |
The name of the function to be used when reordering a factor
conditioning variable (see argument |
shingnum |
The number of shingles ("parts") a continuous conditioning variable should be divided into. |
shingol |
The amount of overlap between adjacent shingles (see argument
|
strip |
The name of the function to be used as the strip argument to
the |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
main |
A string giving the plot title or |
xlb |
A string giving the label for the x-axis. |
ylb |
A string giving the label for the y-axis. |
hicol |
the fill colour of the histogram - an integer or string. The
default is blue (see |
hilty |
the border line type of the histogram - an integer. The
default is 1 (see |
hilwd |
the border line width of the histogram - an integer. The
default is 1 (see |
hidcol |
the fill colour of the density line - an integer or string.
The default is black (see |
hidlty |
the border line type of the density line - an integer. The
default is 1 (see |
hidlwd |
the border line width of the density line - an integer. The
default is 1 (see |
hiborder |
the border colour of the histogram - an integer or string.
The default is black (see |
mirror |
Should we create mirror plots from simulation data? Value can
be |
max.plots.per.page |
The maximum number of plots per page that can be created with the mirror plots. |
mirror.aspect |
The aspect ratio of the plots used for mirror functionality. |
pass.plot.list |
Should we pass the list of plots created with mirror
or should we print them directly. Values can be |
x.cex |
The size of the x-axis label. |
y.cex |
The size of the y-axis label. |
main.cex |
The size of the title. |
mirror.internal |
an internal mirror argument used in
|
... |
Other arguments passed to |
x
can be either numeric or factor, and can be either single valued
strings or vectors of strings.
Returns a histogram.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.panel.histogram
,
histogram
, panel.histogram
,
xpose.prefs-class
, xpose.data-class
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) xpose.plot.histogram("AGE", xpdb5, onlyfirst = TRUE) xpose.plot.histogram(c("SEX", "AGE"), xpdb5, onlyfirst = TRUE) ## End(Not run)
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) xpose.plot.histogram("AGE", xpdb5, onlyfirst = TRUE) xpose.plot.histogram(c("SEX", "AGE"), xpdb5, onlyfirst = TRUE) ## End(Not run)
This is a wrapper function for the lattice qqmath
function.
xpose.plot.qq( x, object, inclZeroWRES = FALSE, onlyfirst = FALSE, samp = NULL, aspect = object@[email protected]$aspect, scales = list(), by = object@[email protected]$condvar, force.by.factor = FALSE, ordby = object@[email protected]$ordby, byordfun = object@[email protected]$byordfun, shingnum = object@[email protected]$shingnum, shingol = object@[email protected]$shingol, strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)), subset = xsubset(object), main = xpose.create.title.hist(x, object, subset, ...), xlb = "Quantiles of Normal", ylb = paste("Quantiles of ", xlabel(x, object), sep = ""), pch = object@[email protected]$pch, col = object@[email protected]$col, cex = object@[email protected]$cex, abllty = object@[email protected]$abllty, abllwd = object@[email protected]$abllwd, ablcol = object@[email protected]$ablcol, mirror = FALSE, max.plots.per.page = 4, mirror.aspect = "fill", pass.plot.list = FALSE, x.cex = NULL, y.cex = NULL, main.cex = NULL, mirror.internal = list(strip.missing = missing(strip)), ... )
xpose.plot.qq( x, object, inclZeroWRES = FALSE, onlyfirst = FALSE, samp = NULL, aspect = object@Prefs@Graph.prefs$aspect, scales = list(), by = object@Prefs@Graph.prefs$condvar, force.by.factor = FALSE, ordby = object@Prefs@Graph.prefs$ordby, byordfun = object@Prefs@Graph.prefs$byordfun, shingnum = object@Prefs@Graph.prefs$shingnum, shingol = object@Prefs@Graph.prefs$shingol, strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)), subset = xsubset(object), main = xpose.create.title.hist(x, object, subset, ...), xlb = "Quantiles of Normal", ylb = paste("Quantiles of ", xlabel(x, object), sep = ""), pch = object@Prefs@Graph.prefs$pch, col = object@Prefs@Graph.prefs$col, cex = object@Prefs@Graph.prefs$cex, abllty = object@Prefs@Graph.prefs$abllty, abllwd = object@Prefs@Graph.prefs$abllwd, ablcol = object@Prefs@Graph.prefs$ablcol, mirror = FALSE, max.plots.per.page = 4, mirror.aspect = "fill", pass.plot.list = FALSE, x.cex = NULL, y.cex = NULL, main.cex = NULL, mirror.internal = list(strip.missing = missing(strip)), ... )
x |
A string or a vector of strings with the name(s) of the x-variable(s). |
object |
An "xpose.data" object. |
inclZeroWRES |
A logical value indicating whether rows with WRES=0 should be plotted. |
onlyfirst |
A logical value indicating whether only the first row per individual should be included in the plot. |
samp |
An integer between 1 and object@Nsim
(see |
aspect |
The aspect ratio of the display (see
|
scales |
A list to be used for the |
by |
A string or a vector of strings with the name(s) of the conditioning variables. |
force.by.factor |
Logical value. If TRUE, and |
ordby |
A string with the name of a variable to be used to reorder any
factor conditioning variables ( |
byordfun |
The name of the function to be used when reordering a factor
conditioning variable (see argument |
shingnum |
The number of shingles ("parts") a continuous conditioning variable should be divided into. |
shingol |
The amount of overlap between adjacent shingles (see argument
|
strip |
The name of the function to be used as the strip argument to
the |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
main |
A string giving the plot title or |
xlb |
A string giving the label for the x-axis. |
ylb |
A string giving the label for the y-axis. |
pch |
Plotting symbol. |
col |
Color of plotting symbol. |
cex |
Amount to scale the plotting character by. |
abllty |
Line type for qqline. |
abllwd |
Line width for qqline. |
ablcol |
Color for qqline. |
mirror |
Should we create mirror plots from simulation data? Value can
be |
max.plots.per.page |
The maximum number of plots per page that can be created with the mirror plots. |
mirror.aspect |
The aspect ratio of the plots used for mirror functionality. |
pass.plot.list |
Should we pass the list of plots created with mirror
or should we print them directly. Values can be |
x.cex |
The size of the x-axis label. |
y.cex |
The size of the y-axis label. |
main.cex |
The size of the title. |
mirror.internal |
an internal mirror argument used in
|
... |
Other arguments passed to |
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.panel.qq
, qqmath
,
panel.qqmathline
, xpose.data-class
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## A QQ plot of WRES xpose.plot.qq("WRES", xpdb5) ## End(Not run)
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## A QQ plot of WRES xpose.plot.qq("WRES", xpdb5) ## End(Not run)
This function is a wrapper for the lattice splom function.
xpose.plot.splom( plist, object, varnames = NULL, main = "Scatterplot Matrix", xlb = NULL, ylb = NULL, scales = list(), onlyfirst = TRUE, inclZeroWRES = FALSE, subset = xsubset(object), by = object@[email protected]$condvar, force.by.factor = FALSE, include.cat.vars = FALSE, ordby = NULL, byordfun = object@[email protected]$byordfun, shingnum = object@[email protected]$shingnum, shingol = object@[email protected]$shingol, strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)), groups = NULL, ids = object@[email protected]$ids, smooth = TRUE, lmline = NULL, panel = xpose.panel.splom, aspect = object@[email protected]$aspect, samp = NULL, max.plots.per.page = 4, mirror = FALSE, mirror.aspect = "fill", pass.plot.list = FALSE, x.cex = NULL, y.cex = NULL, main.cex = NULL, mirror.internal = list(strip.missing = missing(strip)), ... )
xpose.plot.splom( plist, object, varnames = NULL, main = "Scatterplot Matrix", xlb = NULL, ylb = NULL, scales = list(), onlyfirst = TRUE, inclZeroWRES = FALSE, subset = xsubset(object), by = object@Prefs@Graph.prefs$condvar, force.by.factor = FALSE, include.cat.vars = FALSE, ordby = NULL, byordfun = object@Prefs@Graph.prefs$byordfun, shingnum = object@Prefs@Graph.prefs$shingnum, shingol = object@Prefs@Graph.prefs$shingol, strip = function(...) strip.default(..., strip.names = c(TRUE, TRUE)), groups = NULL, ids = object@Prefs@Graph.prefs$ids, smooth = TRUE, lmline = NULL, panel = xpose.panel.splom, aspect = object@Prefs@Graph.prefs$aspect, samp = NULL, max.plots.per.page = 4, mirror = FALSE, mirror.aspect = "fill", pass.plot.list = FALSE, x.cex = NULL, y.cex = NULL, main.cex = NULL, mirror.internal = list(strip.missing = missing(strip)), ... )
plist |
A vector of strings containing variable names for the scatterplot matrix. |
object |
An "xpose.data" object. |
varnames |
A vector of strings containing labels for the variables in the scatterplot matrix. |
main |
A string giving the plot title or |
xlb |
A string giving the label for the x-axis. |
ylb |
A string giving the label for the y-axis. |
scales |
A list to be used for the |
onlyfirst |
A logical value indicating whether only the first row per individual should be included in the plot. |
inclZeroWRES |
A logical value indicating whether rows with WRES=0 should be plotted. |
subset |
A string giving the subset expression to be applied to the
data before plotting. See |
by |
A string or a vector of strings with the name(s) of the conditioning variables. |
force.by.factor |
Logical value. If TRUE, and |
include.cat.vars |
Logical value. |
ordby |
A string with the name of a variable to be used to reorder any
factor conditioning variables ( |
byordfun |
The name of the function to be used when reordering a factor
conditioning variable (see argument |
shingnum |
The number of shingles ("parts") a continuous conditioning variable should be divided into. |
shingol |
The amount of overlap between adjacent shingles (see argument
|
strip |
The name of the function to be used as the strip argument to
the |
groups |
A string with the name of any grouping variable (used as the
groups argument to |
ids |
A logical value indicating whether text labels should be used as
plotting symbols (the variable used for these symbols indicated by the
|
smooth |
A |
lmline |
logical variable specifying whether a linear regression line
should be superimposed over an |
panel |
The name of the panel function to use. |
aspect |
The aspect ratio of the display (see
|
samp |
An integer between 1 and object@Nsim
(see |
max.plots.per.page |
The maximum number of plots per page that can be created with the mirror plots. |
mirror |
Should we create mirror plots from simulation data? Value can
be |
mirror.aspect |
The aspect ratio of the plots used for mirror functionality. |
pass.plot.list |
Should we pass the list of plots created with mirror
or should we print them directly. Values can be |
x.cex |
The size of the x-axis label. |
y.cex |
The size of the y-axis label. |
main.cex |
The size of the title. |
mirror.internal |
an internal mirror argument used in
|
... |
Other arguments passed to |
If ids
is TRUE
, text labels are added to the plotting symbols.
The labels are taken from the idlab
xpose data variable. The way the
text labels are plotted is governed by the idsmode
argument (passed
down to the panel function). idsmode=NULL
(the default) means that
only extreme data points are labelled while a non-NULL
value adds
labels to all data points (the default in Xpose 3).
xpose.panel.default
identifies extreme data points by fitting a loess
smooth (y~x
) and looking at the residuals from that fit. Points that
are associated with the highest/lowest residuals are labelled. "High" and
"low" are judged by the panel function parameter idsext
, which gives
the fraction of the total number of data points that are to be judged
extreme in the "up" and "down" direction. The default value for
idsext
is 0.05 (see link{xpose.prefs-class}
). There is also a
possibility to label only the high or low extreme points. This is done
through the idsdir
argument to xpose.panel.default
. A value of
"both" (the default) means that both high and low extreme points are
labelled while "up" and "down" labels the high and low extreme points
respectively.
More graphical parameters may be passed to xpose.panel.splom
.
for example, if you want to adjust the size of the varnames
and
axis tick labels
you can use the parameters varname.cex=0.5
and axis.text.cex=0.5
.
Returns a scatterplot matrix graph object.
E. Niclas Jonsson, Mats Karlsson, Andrew Hooker & Justin Wilkins
xpose.panel.splom
, splom
,
panel.splom
, xpose.prefs-class
,
xpose.data-class
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## CL, WT, HT, SEX with a regression line xpose.plot.splom(c("CL", "WT", "HT", "SEX"), xpdb5, lmline = TRUE) ## End(Not run)
## Not run: ## xpdb5 is an Xpose data object ## We expect to find the required NONMEM run and table files for run ## 5 in the current working directory xpdb5 <- xpose.data(5) ## CL, WT, HT, SEX with a regression line xpose.plot.splom(c("CL", "WT", "HT", "SEX"), xpdb5, lmline = TRUE) ## End(Not run)
An object of the "xpose.prefs" class holds information about all the variable and graphical preferences for a particular "xpose.data" object.
Objects can be created by calls of the form
new("xpose.prefs",...)
but this is usually not necessary since the
"xpose.prefs" object is created at the same time as the "xpose.data" object.
Niclas Jonsson & Andrew Hooker
xvardef
, xlabel
, xsubset
,
Data
, SData
, xpose.data
,
read.nm.tables
, xpose.data-class
,
xpose.gam
Summarize an xpose database
xpose.print(object, long = TRUE)
xpose.print(object, long = TRUE)
object |
An xpose data object |
long |
long format or not. |
""
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose4-package
,
xsubset()
xpose.print(simpraz.xpdb)
xpose.print(simpraz.xpdb)
Print a string with a certain number of characters per row.
xpose.string.print(value, fill = 60, file = "")
xpose.string.print(value, fill = 60, file = "")
value |
The text to print. |
fill |
How wide should the text be per row. |
file |
Where to print. |
Niclas Jonsson and Andrew C. Hooker
This Function is used to create a VPC in xpose using the output from the
vpc
command in Pearl Speaks NONMEM (PsN). The function reads in the
output files created by PsN and creates a plot from the data. The dependent
variable, independent variable and conditioning variable are automatically
determined from the PsN files.
xpose.VPC( vpc.info = "vpc_results.csv", vpctab = dir(pattern = "^vpctab")[1], object = NULL, ids = FALSE, type = "p", by = NULL, PI = NULL, PI.ci = "area", PI.ci.area.smooth = FALSE, PI.real = TRUE, subset = NULL, main = "Default", main.sub = NULL, main.sub.cex = 0.85, inclZeroWRES = FALSE, force.x.continuous = FALSE, funy = NULL, logy = FALSE, ylb = "Default", verbose = FALSE, PI.x.median = TRUE, PI.rug = "Default", PI.identify.outliers = TRUE, ... )
xpose.VPC( vpc.info = "vpc_results.csv", vpctab = dir(pattern = "^vpctab")[1], object = NULL, ids = FALSE, type = "p", by = NULL, PI = NULL, PI.ci = "area", PI.ci.area.smooth = FALSE, PI.real = TRUE, subset = NULL, main = "Default", main.sub = NULL, main.sub.cex = 0.85, inclZeroWRES = FALSE, force.x.continuous = FALSE, funy = NULL, logy = FALSE, ylb = "Default", verbose = FALSE, PI.x.median = TRUE, PI.rug = "Default", PI.identify.outliers = TRUE, ... )
vpc.info |
The results file from the |
vpctab |
The ‘vpctab’ from the |
object |
An xpose data object. Created from |
ids |
A logical value indicating whether text ID labels should be used
as plotting symbols (the variable used for these symbols indicated by the
|
type |
Character string describing the way the points in the plot will
be displayed. For more details, see |
by |
A string or a vector of strings with the name(s) of the
conditioning variables. For example |
PI |
Either "lines", "area" or "both" specifying whether prediction
intervals (as lines, a shaded area or both) should be added to the plot.
|
PI.ci |
Plot the confidence interval for the simulated data's
percentiles for each bin (for each simulated data set compute the
percentiles for each bin, then, from all of the percentiles from all of the
simulated datasets compute the 95% CI of these percentiles). Values can be
|
PI.ci.area.smooth |
Should the "area" for |
PI.real |
Plot the percentiles of the real data in the various bins. values can be NULL or TRUE. Note that for a bin with few actual observations the percentiles will be approximate. For example, the 95th percentile of 4 data points will always be the largest of the 4 data points. |
subset |
A string giving the subset expression to be applied to the data
before plotting. See |
main |
A string giving the plot title or |
main.sub |
Used for names above each plot when using multiple plots.
Should be a vector |
main.sub.cex |
The size of the |
inclZeroWRES |
Logical value indicating whether rows with WRES=0 is included in the plot. |
force.x.continuous |
Logical value indicating whether x-values should be converted to continuous variables, even if they are defined as factors. |
funy |
String of function to apply to Y data. For example "abs" |
logy |
Logical value indicating whether the y-axis should be logarithmic, base 10. |
ylb |
Label for the y-axis |
verbose |
Should warning messages and other diagnostic information be passed to screen? (TRUE or FALSE) |
PI.x.median |
Should the x-location of percentile lines in a bin be
marked at the median of the x-values? ( |
PI.rug |
Should there be markings on the plot showing where the binning intervals for the VPC are (or the locations of the independent variable used for each VPC calculation if binning is not used)? |
PI.identify.outliers |
Should outlying percentiles of the real data be highlighted? (TRUE of FALSE) |
... |
Other arguments passed to |
A plot or a list of plots.
Below are some of the additional arguments that can control the look and
feel of the VPC. See
xpose.panel.default
for all potential options.
Additional graphical elements available in the VPC plots.
Plot the percentiles of
one simulated data set in each bin. TRUE
takes the first mirror from
‘vpc_results.csv’ and AN.INTEGER.VALUE
can be 1, 2,
...{} n
where n
is the number of mirror's output in the
‘vpc_results.csv’ file.
A vector of two
values that describe the limits of the prediction interval that should be
displayed. These limits should be found in the ‘vpc_results.csv’
file. These limits are also used as the percentages for the PI.real,
PI.mirror
and PI.ci
. However, the confidence interval in
PI.ci
is always the one defined in the ‘vpc_results.csv’ file.
Additional options to control the look and feel of the PI
.
See See grid.polygon
and plot
for more details.
The color of the PI
area
The upper line type. can be "dotted" or "dashed", etc.
The upper type used for plotting. Defaults to a line.
The upper line color
The upper line width
The lower line type. can be "dotted" or "dashed", etc.
The lower type used for plotting. Defaults to a line.
The lower line color
The lower line width
The median line type. can be "dotted" or "dashed", etc.
The median type used for plotting. Defaults to a line.
The median line color
The median line width
Additional options to control the look and feel of the
PI.ci
. See See grid.polygon
and
plot
for more details.
The color of the upper PI.ci
.
The color of the median PI.ci
.
The color of the lower PI.ci
.
The upper line type. can be "dotted" or "dashed", etc.
The upper type used for plotting. Defaults to a line.
The upper line color
The upper line width
The lower line type. can be "dotted" or "dashed", etc.
The lower type used for plotting. Defaults to a line.
The lower line color
The lower line width
The median line type. can be "dotted" or "dashed", etc.
The median type used for plotting. Defaults to a line.
The median line color
The median line width
Should the
"area" for PI.ci
be smoothed to match the "lines" argument? Allowed
values are TRUE/FALSE
. The "area" is set by default to show the bins
used in the PI.ci
computation. By smoothing, information is lost
and, in general, the confidence intervals will be smaller than they are in
reality.
Additional options to control the look and feel of the
PI.real
. See See grid.polygon
and
plot
for more details.
The upper line type. can be "dotted" or "dashed", etc.
The upper type used for plotting. Defaults to a line.
The upper line color
The upper line width
The lower line type. can be "dotted" or "dashed", etc.
The lower type used for plotting. Defaults to a line.
The lower line color
The lower line width
The median line type. can be "dotted" or "dashed", etc.
The median type used for plotting. Defaults to a line.
The median line color
The median line width
Additional options to control the look and feel of the
PI.mirror
. See See plot
for more
details.
The upper line type. can be "dotted" or "dashed", etc.
The upper type used for plotting. Defaults to a line.
The upper line color
The upper line width
The lower line type. can be "dotted" or "dashed", etc.
The lower type used for plotting. Defaults to a line.
The lower line color
The lower line width
The median line type. can be "dotted" or "dashed", etc.
The median type used for plotting. Defaults to a line.
The median line color
The median line width
Andrew Hooker
read.vpctab
read.npc.vpc.results
xpose.panel.default
xpose.plot.default
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC.both()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: library(xpose4) xpose.VPC() ## to be more clear about which files should be read in vpc.file <- "vpc_results.csv" vpctab <- "vpctab5" xpose.VPC(vpc.info=vpc.file,vpctab=vpctab) ## with lines and a shaded area for the prediction intervals xpose.VPC(vpc.file,vpctab=vpctab,PI="both") ## with the percentages of the real data xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T) ## with mirrors (if supplied in 'vpc.file') xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T,PI.mirror=5) ## with CIs xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T,PI.ci="area") xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T,PI.ci="area",PI=NULL) ## stratification (if 'vpc.file' is stratified) cond.var <- "WT" xpose.VPC(vpc.file,vpctab=vpctab) xpose.VPC(vpc.file,vpctab=vpctab,by=cond.var) xpose.VPC(vpctab=vpctab,vpc.info=vpc.file,PI="both",by=cond.var,type="n") ## with no data points in the plot xpose.VPC(vpc.file,vpctab=vpctab,by=cond.var,PI.real=T,PI.ci="area",PI=NULL,type="n") ## with different DV and IDV, just read in new files and plot vpc.file <- "vpc_results.csv" vpctab <- "vpctab5" cond.var <- "WT" xpose.VPC(vpctab=vpctab,vpc.info=vpc.file,PI="both",by=cond.var) xpose.VPC(vpctab=vpctab,vpc.info=vpc.file,PI="both") ## to use an xpose data object instead of vpctab ## ## In this example ## we expect to find the required NONMEM run and table files for run ## 5 in the current working directory runnumber <- 5 xpdb <- xpose.data(runnumber) xpose.VPC(vpc.file,object=xpdb) ## to read files in a directory different than the current working directory vpc.file <- "./vpc_strat_WT_4_mirror_5/vpc_results.csv" vpctab <- "./vpc_strat_WT_4_mirror_5/vpctab5" xpose.VPC(vpc.info=vpc.file,vpctab=vpctab) ## to rearrange order of factors in VPC plot xpdb@Data$SEX <- factor(xpdb@Data$SEX,levels=c("2","1")) xpose.VPC(by="SEX",object=xpdb) ## End(Not run)
## Not run: library(xpose4) xpose.VPC() ## to be more clear about which files should be read in vpc.file <- "vpc_results.csv" vpctab <- "vpctab5" xpose.VPC(vpc.info=vpc.file,vpctab=vpctab) ## with lines and a shaded area for the prediction intervals xpose.VPC(vpc.file,vpctab=vpctab,PI="both") ## with the percentages of the real data xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T) ## with mirrors (if supplied in 'vpc.file') xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T,PI.mirror=5) ## with CIs xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T,PI.ci="area") xpose.VPC(vpc.file,vpctab=vpctab,PI.real=T,PI.ci="area",PI=NULL) ## stratification (if 'vpc.file' is stratified) cond.var <- "WT" xpose.VPC(vpc.file,vpctab=vpctab) xpose.VPC(vpc.file,vpctab=vpctab,by=cond.var) xpose.VPC(vpctab=vpctab,vpc.info=vpc.file,PI="both",by=cond.var,type="n") ## with no data points in the plot xpose.VPC(vpc.file,vpctab=vpctab,by=cond.var,PI.real=T,PI.ci="area",PI=NULL,type="n") ## with different DV and IDV, just read in new files and plot vpc.file <- "vpc_results.csv" vpctab <- "vpctab5" cond.var <- "WT" xpose.VPC(vpctab=vpctab,vpc.info=vpc.file,PI="both",by=cond.var) xpose.VPC(vpctab=vpctab,vpc.info=vpc.file,PI="both") ## to use an xpose data object instead of vpctab ## ## In this example ## we expect to find the required NONMEM run and table files for run ## 5 in the current working directory runnumber <- 5 xpdb <- xpose.data(runnumber) xpose.VPC(vpc.file,object=xpdb) ## to read files in a directory different than the current working directory vpc.file <- "./vpc_strat_WT_4_mirror_5/vpc_results.csv" vpctab <- "./vpc_strat_WT_4_mirror_5/vpctab5" xpose.VPC(vpc.info=vpc.file,vpctab=vpctab) ## to rearrange order of factors in VPC plot xpdb@Data$SEX <- factor(xpdb@Data$SEX,levels=c("2","1")) xpose.VPC(by="SEX",object=xpdb) ## End(Not run)
Xpose Visual Predictive Check (VPC) for both continuous and Below or Above Limit of Quantification (BLQ or ALQ) data.
xpose.VPC.both( vpc.info = "vpc_results.csv", vpctab = dir(pattern = "^vpctab")[1], object = NULL, subset = NULL, main = "Default", main.sub = NULL, inclZeroWRES = FALSE, cont.logy = F, hline = "default", add.args.cont = list(), add.args.cat = list(), ... )
xpose.VPC.both( vpc.info = "vpc_results.csv", vpctab = dir(pattern = "^vpctab")[1], object = NULL, subset = NULL, main = "Default", main.sub = NULL, inclZeroWRES = FALSE, cont.logy = F, hline = "default", add.args.cont = list(), add.args.cat = list(), ... )
vpc.info |
Name of PSN file to use. File will come from |
vpctab |
Name of vpctab file produced from PsN. |
object |
Xpose data object. |
subset |
Subset of data to look at. |
main |
Title for plot. |
main.sub |
Used for names above each plot when using multiple plots.
Should be a vector, e.g. |
inclZeroWRES |
Include WRES=0 rows in the computations for these plots? |
cont.logy |
Should the continuous plot y-axis be on the log scale? |
hline |
Horizontal line marking the limits of quantification. If they are defined, they must be a vector of values. |
add.args.cont |
Additional arguments to the continuous plot.
|
add.args.cat |
Additional arguments to the categorical plot.
|
... |
Additional arguments to both plots. |
Andrew C. Hooker
xpose.VPC
, xpose.VPC.categorical
.
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.categorical()
,
xpose4-package
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.categorical()
,
xpose4-package
## Not run: library(xpose4) ## move to the directory where results from PsN ## are found cur.dir <- getwd() setwd(paste(cur.dir,"/vpc_cont_LLOQ/",sep="")) xpose.VPC() xpose.VPC.categorical(censored=T) xpose.VPC.both() xpose.VPC.both(subset="DV>1.75") xpose.VPC.both(add.args.cont=list(ylim=c(0,80))) xpose.VPC.both(add.args.cont = list(ylim = c(0.01, 80)), xlim = c(0, 40), add.args.cat = list(ylim = c(0, 0.4)), cont.logy = T) xpose.VPC.both(cont.logy=T) ## End(Not run)
## Not run: library(xpose4) ## move to the directory where results from PsN ## are found cur.dir <- getwd() setwd(paste(cur.dir,"/vpc_cont_LLOQ/",sep="")) xpose.VPC() xpose.VPC.categorical(censored=T) xpose.VPC.both() xpose.VPC.both(subset="DV>1.75") xpose.VPC.both(add.args.cont=list(ylim=c(0,80))) xpose.VPC.both(add.args.cont = list(ylim = c(0.01, 80)), xlim = c(0, 40), add.args.cat = list(ylim = c(0, 0.4)), cont.logy = T) xpose.VPC.both(cont.logy=T) ## End(Not run)
Xpose visual predictive check for categorical data (binary, ordered categorical and count data).
xpose.VPC.categorical( vpc.info = "vpc_results.csv", vpctab = dir(pattern = "^vpctab")[1], object = NULL, subset = NULL, main = "Default", main.sub = "Default", main.sub.cex = 0.85, real.col = 4, real.lty = "b", real.cex = 1, real.lwd = 1, median.line = FALSE, median.col = "darkgrey", median.lty = 1, ci.lines = FALSE, ci.col = "blue", ci.lines.col = "darkblue", ci.lines.lty = 3, xlb = "Default", ylb = "Proportion of Total", force.x.continuous = FALSE, level.to.plot = NULL, max.plots.per.page = 1, rug = TRUE, rug.col = "orange", censored = FALSE, ... )
xpose.VPC.categorical( vpc.info = "vpc_results.csv", vpctab = dir(pattern = "^vpctab")[1], object = NULL, subset = NULL, main = "Default", main.sub = "Default", main.sub.cex = 0.85, real.col = 4, real.lty = "b", real.cex = 1, real.lwd = 1, median.line = FALSE, median.col = "darkgrey", median.lty = 1, ci.lines = FALSE, ci.col = "blue", ci.lines.col = "darkblue", ci.lines.lty = 3, xlb = "Default", ylb = "Proportion of Total", force.x.continuous = FALSE, level.to.plot = NULL, max.plots.per.page = 1, rug = TRUE, rug.col = "orange", censored = FALSE, ... )
vpc.info |
Name of PSN file to use. File will come from |
vpctab |
Name of vpctab file produced from PsN. |
object |
Xpose data object. |
subset |
Subset of data to look at. |
main |
Title for plot. |
main.sub |
Used for names above each plot when using multiple plots.
Should be a vector, e.g. |
main.sub.cex |
Size of |
real.col |
Color of real line. |
real.lty |
Real line type. |
real.cex |
Size of real line. |
real.lwd |
Width of real line. |
median.line |
Dray a median line? |
median.col |
Color of median line. |
median.lty |
median line type. |
ci.lines |
Lines marking confidence interval? |
ci.col |
Color of CI area. |
ci.lines.col |
Color of CI lines. |
ci.lines.lty |
Type of CI lines. |
xlb |
X-axis label. If other than "default"" passed directly to
|
ylb |
Y-axis label. Passed directly to |
force.x.continuous |
For the x variable to be continuous. |
level.to.plot |
Which levels of the variable to plot. Smallest level is 1, largest is number_of_levels. For example, with 4 levels, the largest level would be 4, the smallest would be 1. |
max.plots.per.page |
The number of plots per page. |
rug |
Should there be markings on the plot showing where the intervals for the VPC are? |
rug.col |
Color of the rug. |
censored |
Is this censored data? Censored data can be both below and above the limit of quantification. |
... |
Additional information passed to function. |
Andrew C. Hooker
Other specific functions:
absval.cwres.vs.cov.bw()
,
absval.cwres.vs.pred()
,
absval.cwres.vs.pred.by.cov()
,
absval.iwres.cwres.vs.ipred.pred()
,
absval.iwres.vs.cov.bw()
,
absval.iwres.vs.idv()
,
absval.iwres.vs.ipred()
,
absval.iwres.vs.ipred.by.cov()
,
absval.iwres.vs.pred()
,
absval.wres.vs.cov.bw()
,
absval.wres.vs.idv()
,
absval.wres.vs.pred()
,
absval.wres.vs.pred.by.cov()
,
absval_delta_vs_cov_model_comp
,
addit.gof()
,
autocorr.cwres()
,
autocorr.iwres()
,
autocorr.wres()
,
basic.gof()
,
basic.model.comp()
,
cat.dv.vs.idv.sb()
,
cat.pc()
,
cov.splom()
,
cwres.dist.hist()
,
cwres.dist.qq()
,
cwres.vs.cov()
,
cwres.vs.idv()
,
cwres.vs.idv.bw()
,
cwres.vs.pred()
,
cwres.vs.pred.bw()
,
cwres.wres.vs.idv()
,
cwres.wres.vs.pred()
,
dOFV.vs.cov()
,
dOFV.vs.id()
,
dOFV1.vs.dOFV2()
,
data.checkout()
,
dv.preds.vs.idv()
,
dv.vs.idv()
,
dv.vs.ipred()
,
dv.vs.ipred.by.cov()
,
dv.vs.ipred.by.idv()
,
dv.vs.pred()
,
dv.vs.pred.by.cov()
,
dv.vs.pred.by.idv()
,
dv.vs.pred.ipred()
,
gof()
,
ind.plots()
,
ind.plots.cwres.hist()
,
ind.plots.cwres.qq()
,
ipred.vs.idv()
,
iwres.dist.hist()
,
iwres.dist.qq()
,
iwres.vs.idv()
,
kaplan.plot()
,
par_cov_hist
,
par_cov_qq
,
parm.vs.cov()
,
parm.vs.parm()
,
pred.vs.idv()
,
ranpar.vs.cov()
,
runsum()
,
wres.dist.hist()
,
wres.dist.qq()
,
wres.vs.idv()
,
wres.vs.idv.bw()
,
wres.vs.pred()
,
wres.vs.pred.bw()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose4-package
Other PsN functions:
boot.hist()
,
bootscm.import()
,
npc.coverage()
,
randtest.hist()
,
read.npc.vpc.results()
,
read.vpctab()
,
xpose.VPC()
,
xpose.VPC.both()
,
xpose4-package
## Not run: library(xpose4) ## move to the directory where results from PsN ## are found cur.dir <- getwd() setwd(paste(cur.dir,"/binary/vpc_36",sep="")) xpose.VPC.categorical(level.to.plot=1,max.plots.per.page=4) xpose.VPC.categorical(level.to.plot=1,max.plots.per.page=4,by="DOSE") ## ordered categorical plots setwd(paste(cur.dir,"/ordered_cat/vpc_45",sep="")) xpose.VPC.categorical() ## count setwd(paste(cur.dir,"/count/vpc65b",sep="")) xpose.VPC.categorical() setwd(paste(cur.dir,"/count/vpc65a",sep="")) xpose.VPC.categorical() ## End(Not run)
## Not run: library(xpose4) ## move to the directory where results from PsN ## are found cur.dir <- getwd() setwd(paste(cur.dir,"/binary/vpc_36",sep="")) xpose.VPC.categorical(level.to.plot=1,max.plots.per.page=4) xpose.VPC.categorical(level.to.plot=1,max.plots.per.page=4,by="DOSE") ## ordered categorical plots setwd(paste(cur.dir,"/ordered_cat/vpc_45",sep="")) xpose.VPC.categorical() ## count setwd(paste(cur.dir,"/count/vpc65b",sep="")) xpose.VPC.categorical() setwd(paste(cur.dir,"/count/vpc65a",sep="")) xpose.VPC.categorical() ## End(Not run)
Classic menu system for Xpose 4
xpose4()
xpose4()
Andrew Hooker
Other classic functions:
xpose4-package
## Not run: xpose4() ## End(Not run)
## Not run: xpose4() ## End(Not run)
Extract or set the value of the Subset slot of an "xpose.data" object.
xsubset(object) xsubset(object) <- value
xsubset(object) xsubset(object) <- value
object |
An "xpose.data" object. |
value |
A string with the subset expression. |
The subset string has the same syntax as the subset argument to, e.g.
panel.xyplot
. Note, however, that the "xpose.data" subset is not used
as an argument to panel.xyplot
. It is intended as the subset argument
to the Data
and SData
functions.
A string representing the subset expression.
xsubset(object) <- value
: assign value with a string representing the subset expression
Niclas Jonsson
Other data functions:
add_transformed_columns
,
change_graphical_parameters
,
change_misc_parameters
,
compute.cwres()
,
data.checkout()
,
data_extract_or_assign
,
db.names()
,
export.graph.par()
,
export.variable.definitions()
,
import.graph.par()
,
import.variable.definitions()
,
make.sb.data()
,
nsim()
,
par_cov_summary
,
read.TTE.sim.data()
,
read.nm.tables()
,
read_NM_output
,
read_nm_table()
,
simprazExample()
,
tabulate.parameters()
,
xlabel()
,
xpose.data
,
xpose.print()
,
xpose4-package
xpdb <- simpraz.xpdb xsubset(xpdb) <- "DV > 0" xsubset(xpdb)
xpdb <- simpraz.xpdb xsubset(xpdb) <- "DV > 0" xsubset(xpdb)
This function extracts and set Xpose variable definitions in "xpose.data" objects.
xvardef(x, object) xvardef(object) <- value
xvardef(x, object) xvardef(object) <- value
x |
The name of an xpose variable (see below). |
object |
An |
value |
A two element vector of which the first element is the name of the variable and the second the column name in the Data slot of the object. |
The Xpose variable definitions are used to map particular variable types to
column names in the data.frame in the Data slot of the "xpose.data" object.
The single-valued Xpose variable definitions are: id, idlab, idv, occ,
dv, pred, ipred, iwres, res
. The (potentially) vector-valued Xpose variable
definitions are: parms, covariates, ranpar, tvparms
(parameters,
covariates, random effects parameters=etas, typical value parameters). The
default values of these can be found in the createXposeClasses
function.
Returns a string with the name of the data variable defined as the Xpose data variable.
xvardef(object) <- value
: reset the which column the label dv points to in the Data slot of
the xpose database object
Niclas Jonsson
xpose.data-class
,xpose.prefs-class
xpdb <- simpraz.xpdb ## get the column name in the Data slot of object xpdb ## corresponding to the label dv xvardef("dv", xpdb) ## reset the which column the label dv points to in the Data slot of ## object xpdb xvardef(xpdb) <- c("dv", "DVA")
xpdb <- simpraz.xpdb ## get the column name in the Data slot of object xpdb ## corresponding to the label dv xvardef("dv", xpdb) ## reset the which column the label dv points to in the Data slot of ## object xpdb xvardef(xpdb) <- c("dv", "DVA")